On Ψω-factorizable groups

被引:0
|
作者
Zhang, Heng [1 ]
Xi, Wenfei [2 ]
Wu, Yaoqiang [1 ]
Li, Hongling [1 ]
机构
[1] Suqian Univ, Sch Sci & Arts, Suqian 223800, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210046, Peoples R China
基金
中国国家自然科学基金;
关键词
Psi omega-factorizable groups; G delta-uniformly continuous functions; Pseudo-tau-fine; M-factorizable groups;
D O I
10.1016/j.topol.2024.109129
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A topological group G is called Psi w-factorizable (resp. M-factorizable) if every continuous real-valued function on G admits a factorization via a continuous homomorphism onto a topological group H with psi ( H ) <= omega (resp. a first-countable group). The first purpose of this article is to discuss some characterizations of Psi w- factorizable groups. It is shown that a topological group G is Psi w-factorizable if and only if every continuous real-valued function on G is G s-uniformly continuous, if and only if for every cozero-set U of G , there exists a G s-subgroup N of G such that UN = U . Sufficient conditions on the Psi w-factorizable group G to be M-factorizable are that G is tau-fine and tau-steady for a cardinal tau . (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] SOLVABILITY OF FACTORIZABLE GROUPS, I
    FINKEL, D
    LUNDGREN, JR
    JOURNAL OF ALGEBRA, 1979, 57 (01) : 230 - 235
  • [22] FACTORIZABLE LOCALLY GRADED GROUPS
    CHERNIKOV, NS
    DOKLADY AKADEMII NAUK SSSR, 1981, 260 (03): : 543 - 546
  • [23] SOLVABILITY OF CERTAIN FACTORIZABLE GROUPS
    FINKEL, D
    JOURNAL OF ALGEBRA, 1977, 47 (02) : 223 - 230
  • [24] Non-factorizable groups
    1600, Forum-Editrice Universitaria Udinese SRL
  • [25] ON THE EXPONENT OF CERTAIN FACTORIZABLE GROUPS
    HOWLETT, RB
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1985, 31 : 265 - 271
  • [26] A CONVERGENCE THEOREM FOR FACTORIZABLE GROUPS
    ALPERIN, JL
    ARCHIV DER MATHEMATIK, 1968, 19 (01) : 34 - &
  • [27] NON-FACTORIZABLE GROUPS
    Darafsheh, M. R.
    Rezaeezadeh, G. R.
    Koruki, M. R. Dehghan
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, (31): : 43 - 48
  • [28] FACTORIZABLE NON-SOLUBLE GROUPS
    ADNAN, S
    ARCHIV DER MATHEMATIK, 1982, 39 (05) : 394 - 406
  • [29] ON SOME KINDS OF FACTORIZABLE TOPOLOGICAL GROUPS
    Bao, Meng
    Xu, Xiaoquan
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (03): : 677 - 691
  • [30] PM-factorizable topological groups
    Xie, Li-Hong
    Yan, Peng-Fei
    TOPOLOGY AND ITS APPLICATIONS, 2022, 322