A Two-Stage Deep Learning Network for Synthetic CT Generation from Cone-Beam CT Images

被引:0
|
作者
Haidari, A. R. M. [1 ]
Ali, E. [2 ]
Granville, D. A.
机构
[1] Carleton Univ, Ottawa, ON, Canada
[2] Ottawa Hosp, Ottawa, ON, Canada
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PO-GPV-T-2
引用
收藏
页码:7955 / 7955
页数:1
相关论文
共 50 条
  • [41] Deep Evidential Uncertainty Estimation in Joint Synthesis and Registration of MRI and Cone-Beam CT Images
    Yi, M.
    Duan, R.
    Li, Z.
    Siewerdsen, J. H.
    Uneri, A.
    Lee, J.
    Jones, C. K.
    IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, MEDICAL IMAGING 2024, 2024, 12928
  • [42] Head and neck synthetic CT generated from ultra-low-dose cone-beam CT following Image Gently Protocol using deep neural network
    Yuan, Nimu
    Rao, Shyam
    Chen, Quan
    Sensoy, Levent
    Qi, Jinyi
    Rong, Yi
    MEDICAL PHYSICS, 2022, 49 (05) : 3263 - 3277
  • [43] Tissue Segmentation in Nasopharyngeal CT Images Using Two-Stage Learning
    Luo, Yong
    Li, Xiaojie
    Luo, Chao
    Wang, Feng
    Wu, Xi
    Mumtaz, Imran
    Yi, Cheng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 65 (02): : 1771 - 1780
  • [44] A convolutional neural network for estimating cone-beam CT intensity deviations from virtual CT projections
    Rusanov, Branimir
    Ebert, Martin A.
    Mukwada, Godfrey
    Hassan, Ghulam Mubashar
    Sabet, Mahsheed
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (21):
  • [45] Generation and Evaluation of Synthetic Computed Tomography (CT) from Cone-Beam CT (CBCT) by Incorporating Feature-Driven Loss into Intensity-Based Loss Functions in Deep Convolutional Neural Network
    Yoo, Sang Kyun
    Kim, Hojin
    Choi, Byoung Su
    Park, Inkyung
    Kim, Jin Sung
    CANCERS, 2022, 14 (18)
  • [46] Generating Synthetic CT From Daily Cone Beam CT Using Machine Learning Models
    Yoganathan, S. A.
    Paloor, S.
    Hammoud, R.
    Hammadi, N.
    MEDICAL PHYSICS, 2020, 47 (06) : E622 - E622
  • [47] Hybrid Adversarial Network for Ultra-Quality Pulmonary Anatomy Imaging From Cone-Beam CT Images
    Zhu, J.
    Chen, W.
    Nicol, A.
    Lam, Y.
    Cai, J.
    Ren, G.
    MEDICAL PHYSICS, 2022, 49 (06) : E590 - E590
  • [48] Cone-beam CT-derived relative stopping power map generation via deep learning for proton radiotherapy
    Harms, Joseph
    Lei, Yang
    Wang, Tonghe
    McDonald, Mark
    Ghavidel, Beth
    Stokes, William
    Curran, Walter J.
    Zhou, Jun
    Liu, Tian
    Yang, Xiaofeng
    MEDICAL PHYSICS, 2020, 47 (09) : 4416 - 4427
  • [49] Simulation of x-ray images from the planning CT for online correction of scatter in cone-beam CT
    Rit, S.
    Romero, E.
    Oliva, M. Vila
    Brousmiche, S.
    Sarrut, D.
    Letang, J. M.
    Freud, N.
    RADIOTHERAPY AND ONCOLOGY, 2014, 111 : S115 - S115
  • [50] Deep Learning-Based Relative Stopping Power Mapping Generation with Cone-Beam CT in Proton Radiation Therapy
    Wang, Tonghe
    Harms, Joseph
    Lei, Yang
    Ghavidel, Beth
    Stokes, William
    Liu, Tian
    Curran, Walter J.
    McDonald, Mark
    Zhou, Jun
    Yang, Xiaofeng
    MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING, 2020, 11312