A Two-Stage Deep Learning Network for Synthetic CT Generation from Cone-Beam CT Images

被引:0
|
作者
Haidari, A. R. M. [1 ]
Ali, E. [2 ]
Granville, D. A.
机构
[1] Carleton Univ, Ottawa, ON, Canada
[2] Ottawa Hosp, Ottawa, ON, Canada
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PO-GPV-T-2
引用
收藏
页码:7955 / 7955
页数:1
相关论文
共 50 条
  • [31] Tooth Segmentation from Cone-Beam CT Images Through Boundary Refinement
    Xu, Yiheng
    Zhang, Mingkun
    Huang, Sibo
    Zhang, Dongyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT IV, 2023, 14257 : 190 - 202
  • [32] Reconstructing CT Images from Cone-Beam CT Projections Using Learned Primal Dual Reconstruction
    Liang, X.
    Gonzalez, Y.
    Nguyen, D.
    Zhang, Y.
    Jiang, S.
    MEDICAL PHYSICS, 2019, 46 (06) : E127 - E127
  • [33] Two-Stage Deep Learning Model for Adrenal Nodule Detection on CT Images: A Retrospective Study
    Ahn, Chang Ho
    Kim, Taewoo
    Jo, Kyungmin
    Park, Seung Shin
    Kim, Min Joo
    Yoon, Ji Won
    Kim, Taek Min
    Kim, Sang Youn
    Kim, Jung Hee
    Choo, Jaegul
    RADIOLOGY, 2025, 314 (03)
  • [34] Use of GammaPlan convolution algorithm for dose calculation on CT and cone-beam CT images
    Ramachandran, Prabhakar
    Perrett, Ben
    Dancewicz, Orrie
    Seshadri, Venkatakrishnan
    Jones, Catherine
    Mehta, Akash
    Foote, Matthew
    RADIATION ONCOLOGY JOURNAL, 2021, 39 (02): : 129 - 138
  • [35] Cone-Beam CT Scatter Artifact Removal with Deep Residual Generative Adversarial Network
    Qin, N.
    Gonzalez, Y.
    Shen, C.
    Shieh, C.
    Jia, X.
    MEDICAL PHYSICS, 2018, 45 (06) : E704 - E704
  • [36] A Self-Configuring Deep Learning Network for Segmentation of Temporal Bone Anatomy in Cone-Beam CT Imaging
    Ding, Andy S.
    Lu, Alexander
    Li, Zhaoshuo
    Sahu, Manish
    Galaiya, Deepa
    Siewerdsen, Jeffrey H.
    Unberath, Mathias
    Taylor, Russell H.
    Creighton, Francis X.
    OTOLARYNGOLOGY-HEAD AND NECK SURGERY, 2023, 169 (04) : 988 - 998
  • [37] Comparison of different deep learning architectures for synthetic CT generation from MR images
    Bahrami, Abbas
    Karimian, Alireza
    Arabi, Hossein
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 90 : 99 - 107
  • [38] Does cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images
    Guerrero, Maria Eugenia
    Noriega, Jorge
    Castro, Carmen
    Jacobs, Reinhilde
    IMAGING SCIENCE IN DENTISTRY, 2014, 44 (02) : 121 - 128
  • [39] Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy
    Xue, X.
    Ding, Y.
    Shi, J.
    Hao, X.
    Li, X.
    Li, D.
    Wu, Y.
    An, H.
    Wei, W.
    Jiang, M.
    Wang, X.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [40] Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy
    Xue, Xudong
    Ding, Yi
    Shi, Jun
    Hao, Xiaoyu
    Li, Xiangbin
    Li, Dan
    Wu, Yuan
    An, Hong
    Jiang, Man
    Wei, Wei
    Wang, Xiao
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2021, 20