Multi-label feature selection via label relaxation

被引:0
|
作者
Fan, Yuling [1 ,2 ,3 ]
Liu, Peizhong [1 ]
Liu, Jinghua [4 ]
机构
[1] Huaqiao Univ, Coll Engn, Quanzhou 362021, Peoples R China
[2] Huaqiao Univ, Coll Mech Engn & Automat, Xiamen 361021, Peoples R China
[3] Xiamen Solex High Tech Ind Co Ltd, Xiamen 361022, Peoples R China
[4] Huaqiao Univ, Coll Comp Sci & Technol, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature selection; Multi-label classification; Feature graph; Label graph; Optimization; CLASSIFICATION;
D O I
10.1016/j.asoc.2025.113047
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label feature selection (MFS) has emerged as a prevalent strategy to manage high-dimensional multi-label data. Most existing methods assume that the rigid binary label matrix can perfectly fit the pseudo-label matrix during the learning process, so as to preserve the structural information in raw data. However, the original label space with the limited freedom makes it challenging to accurately convert to the pseudo-label matrix. Additionally, most methods utilize different matrix to explore structural information, and ignore the connection of structural information. To tackle these problems, a novel method named multi-label feature selection via label relaxation (LRMFS) is proposed. LRMFS designs a label relaxation regression to transform the rigid binary label matrix into a slack variable matrix, allowing for a more flexible fitting relationship. By leveraging this flexible fitting, LRMFS decomposes the feature selection matrix to a structured subspace, which can learn the graph structures of both features and labels by graph Laplacian. These properties of LRMFS are converted to an objective function, and we further develop an alternative solution for the function optimization. Comparative experiments show that LRMFS exhibits superior performance than eight MFS methods on twelve multi-label data sets.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Feature Selection for Multi-label Classification Problems
    Doquire, Gauthier
    Verleysen, Michel
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2011, PT I, 2011, 6691 : 9 - 16
  • [42] Multi-label feature selection with streaming labels
    Lin, Yaojin
    Hu, Qinghua
    Zhang, Jia
    Wu, Xindong
    INFORMATION SCIENCES, 2016, 372 : 256 - 275
  • [43] Multi-label feature selection via maximum dynamic correlation change and minimum label redundancy
    Xi-Ao Ma
    Wentian Jiang
    Yun Ling
    Bailin Yang
    Artificial Intelligence Review, 2023, 56 : 3099 - 3142
  • [44] Multi-label feature selection via maximum dynamic correlation change and minimum label redundancy
    Ma, Xi-Ao
    Jiang, Wentian
    Ling, Yun
    Yang, Bailin
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL3) : S3099 - S3142
  • [45] Novel multi-label feature selection via label enhancement and relative maximal discernibility pairs
    Dai, Jianhua
    Wang, Zhiyang
    Huang, Weiyi
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3237 - 3253
  • [46] Multi-source Multi-label Feature Selection
    Yuan, Xiulan
    Hu, Xuegang
    Li, Peipei
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [47] Fuzzy rough discrimination and label weighting for multi-label feature selection
    Tan, Anhui
    Liang, Jiye
    Wu, Wei-Zhi
    Zhang, Jia
    Sun, Lin
    Chen, Chao
    NEUROCOMPUTING, 2021, 465 : 128 - 140
  • [48] Multi-label feature selection with local discriminant model and label correlations
    Fan, Yuling
    Liu, Jinghua
    Weng, Wei
    Chen, Baihua
    Chen, Yannan
    Wu, Shunxiang
    NEUROCOMPUTING, 2021, 442 : 98 - 115
  • [49] Label distribution feature selection for multi-label classification with rough set
    Qian, Wenbin
    Huang, Jintao
    Wang, Yinglong
    Xie, Yonghong
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 128 : 32 - 55
  • [50] Partial multi-label feature selection based on label matrix decomposition
    Guanghui Liu
    Qiaoyan Li
    Xiaofei Yang
    Zhiwei Xing
    Yingcang Ma
    Neural Computing and Applications, 2025, 37 (6) : 4207 - 4227