Multi-label feature selection via label relaxation

被引:0
|
作者
Fan, Yuling [1 ,2 ,3 ]
Liu, Peizhong [1 ]
Liu, Jinghua [4 ]
机构
[1] Huaqiao Univ, Coll Engn, Quanzhou 362021, Peoples R China
[2] Huaqiao Univ, Coll Mech Engn & Automat, Xiamen 361021, Peoples R China
[3] Xiamen Solex High Tech Ind Co Ltd, Xiamen 361022, Peoples R China
[4] Huaqiao Univ, Coll Comp Sci & Technol, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature selection; Multi-label classification; Feature graph; Label graph; Optimization; CLASSIFICATION;
D O I
10.1016/j.asoc.2025.113047
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label feature selection (MFS) has emerged as a prevalent strategy to manage high-dimensional multi-label data. Most existing methods assume that the rigid binary label matrix can perfectly fit the pseudo-label matrix during the learning process, so as to preserve the structural information in raw data. However, the original label space with the limited freedom makes it challenging to accurately convert to the pseudo-label matrix. Additionally, most methods utilize different matrix to explore structural information, and ignore the connection of structural information. To tackle these problems, a novel method named multi-label feature selection via label relaxation (LRMFS) is proposed. LRMFS designs a label relaxation regression to transform the rigid binary label matrix into a slack variable matrix, allowing for a more flexible fitting relationship. By leveraging this flexible fitting, LRMFS decomposes the feature selection matrix to a structured subspace, which can learn the graph structures of both features and labels by graph Laplacian. These properties of LRMFS are converted to an objective function, and we further develop an alternative solution for the function optimization. Comparative experiments show that LRMFS exhibits superior performance than eight MFS methods on twelve multi-label data sets.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Label correlations-based multi-label feature selection with label enhancement
    Qian, Wenbin
    Xiong, Yinsong
    Ding, Weiping
    Huang, Jintao
    Vong, Chi-Man
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [32] Multi-label Feature Selection Techniques for Hierarchical Multi-label Protein Function Prediction
    Cerri, Ricardo
    Mantovani, Rafael G.
    Basgalupp, Marcio P.
    de Carvalho, Andre C. P. L. F.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [33] Partial multi-label feature selection with feature noise
    Wu, You
    Li, Peipei
    Zou, Yizhang
    PATTERN RECOGNITION, 2025, 162
  • [34] Multi-label feature selection via feature manifold learning and sparsity regularization
    Cai, Zhiling
    Zhu, William
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (08) : 1321 - 1334
  • [35] Robust Feature Selection with Feature Correlation via Sparse Multi-Label Learning
    Jiangjiang Cheng
    Junmei Mei
    Jing Zhong
    Min Men
    Ping Zhong
    Pattern Recognition and Image Analysis, 2020, 30 : 52 - 62
  • [36] Multi-label feature selection via feature manifold learning and sparsity regularization
    Zhiling Cai
    William Zhu
    International Journal of Machine Learning and Cybernetics, 2018, 9 : 1321 - 1334
  • [37] Robust Feature Selection with Feature Correlation via Sparse Multi-Label Learning
    Cheng, Jiangjiang
    Mei, Junmei
    Zhong, Jing
    Men, Min
    Zhong, Ping
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2020, 30 (01) : 52 - 62
  • [38] Feature Selection for Hierarchical Multi-label Classification
    da Silva, Luan V. M.
    Cerri, Ricardo
    ADVANCES IN INTELLIGENT DATA ANALYSIS XIX, IDA 2021, 2021, 12695 : 196 - 208
  • [39] Multi-label feature selection with missing labels
    Zhu, Pengfei
    Xu, Qian
    Hu, Qinghua
    Zhang, Changqing
    Zhao, Hong
    PATTERN RECOGNITION, 2018, 74 : 488 - 502
  • [40] Online Multi-label Group Feature Selection
    Liu, Jinghua
    Lin, Yaojin
    Wu, Shunxiang
    Wang, Chenxi
    KNOWLEDGE-BASED SYSTEMS, 2018, 143 : 42 - 57