Enhancing Gene Expression Prediction from Histology Images with Spatial Transcriptomics Completion

被引:0
|
作者
Mejia, Gabriel [1 ]
Ruiz, Daniela [1 ]
Cardenas, Paula [1 ]
Manrique, Leonardo [1 ]
Vega, Daniela [1 ]
Arbelaez, Pablo [1 ]
机构
[1] Univ Los Andes, Ctr Res & Format Artificial Intelligence, Bogota, Colombia
关键词
Spatial transcriptomics; completion; transformers; histology;
D O I
10.1007/978-3-031-72083-3_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial Transcriptomics is a novel technology that aligns histology images with spatially resolved gene expression profiles. Although groundbreaking, it struggles with gene capture yielding high corruption in acquired data. Given potential applications, recent efforts have focused on predicting transcriptomic profiles solely from histology images. However, differences in databases, preprocessing techniques, and training hyperparameters hinder a fair comparison between methods. To address these challenges, we present a systematically curated and processed database collected from 26 public sources, representing an 8.6-fold increase compared to previous works. Additionally, we propose a state-of-the-art transformer-based completion technique for inferring missing gene expression, which significantly boosts the performance of transcriptomic profile predictions across all datasets. Altogether, our contributions constitute the most comprehensive benchmark of gene expression prediction from histology images to date and a stepping stone for future research on spatial transcriptomics.
引用
收藏
页码:91 / 101
页数:11
相关论文
共 50 条
  • [41] Spatial transcriptomics reveals regionally altered gene expression that drives retinal degeneration
    Ulrike Schumann
    Lixinyu Liu
    Riemke Aggio-Bruce
    Adrian V. Cioanca
    Artur Shariev
    Michele C. Madigan
    Krisztina Valter
    Jiayu Wen
    Riccardo Natoli
    Communications Biology, 8 (1)
  • [42] Spatial Transcriptomics Reveal Potential Sex Differences in Gene Expression of the Supraoptic Nucleus
    Nguyen, Dianna H-T
    Phillips, Nicole
    Cunningham, J. T.
    FASEB JOURNAL, 2022, 36
  • [43] Gene expression profiling of periodontitis-affected gingival tissue by spatial transcriptomics
    Lundmark, Anna
    Gerasimcik, Natalija
    Bage, Tove
    Jemt, Anders
    Mollbrink, Annelie
    Salmen, Fredrik
    Lundeberg, Joakim
    Yucel-Lindberg, Tulay
    SCIENTIFIC REPORTS, 2018, 8
  • [44] Spatial transcriptomics reveals gene expression characteristics in invasive micropapillary carcinoma of the breast
    Jianke Lv
    Qianqian Shi
    Yunwei Han
    Weidong Li
    Hanjiao Liu
    Jingyue Zhang
    Chen Niu
    Guangshen Gao
    Yiru Fu
    Renyong Zhi
    Kailiang Wu
    Shuai Li
    Feng Gu
    Li Fu
    Cell Death & Disease, 12
  • [45] Gene expression prediction using low-rank matrix completion
    Kapur, Arnav
    Marwah, Kshitij
    Alterovitz, Gil
    BMC BIOINFORMATICS, 2016, 17
  • [46] Gene expression prediction using low-rank matrix completion
    Arnav Kapur
    Kshitij Marwah
    Gil Alterovitz
    BMC Bioinformatics, 17
  • [47] AI-enabled prediction of lung cancer specific hot spot gene alterations from histology images
    Shafi, Gowhar
    Shivamurthy, Shiva
    Ulle, Anand
    Chinglemba, Chongtham Cha
    Haldar, Sumit
    Moubeen, Fauzul
    Uttarwar, Mohan
    CANCER RESEARCH, 2023, 83 (07)
  • [48] THItoGene: a deep learning method for predicting spatial transcriptomics from histological images
    Jia, Yuran
    Liu, Junliang
    Chen, Li
    Zhao, Tianyi
    Wang, Yadong
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)
  • [49] Prediction of cancer treatment response from histopathology images through imputed transcriptomics
    Hoang, Danh-Tai
    Dinstag, Gal
    Hermida, Leandro C.
    Ben-Zvi, Doreen
    Stossel, Chani
    Patil, Tejas
    Sammut, Stephen-John
    Lassoued, Wiem
    Allen, Clint
    Beker, Tuvik
    Jiang, Peng
    Golan, Talia
    Sowalsky, Adam G.
    Pine, Sharon R.
    Caldas, Carlos
    Gulley, James L.
    Aldape, Kenneth D.
    Aharonov, Ranit
    Stone, Eric
    Ruppin, Eytan
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [50] Inferring histology-associated gene expression gradients in spatial transcriptomic studies
    Kueckelhaus, Jan
    Frerich, Simon
    Kada-Benotmane, Jasim
    Koupourtidou, Christina
    Ninkovic, Jovica
    Dichgans, Martin
    Beck, Juergen
    Schnell, Oliver
    Heiland, Dieter Henrik
    NATURE COMMUNICATIONS, 2024, 15 (01)