Enhancing Gene Expression Prediction from Histology Images with Spatial Transcriptomics Completion

被引:0
|
作者
Mejia, Gabriel [1 ]
Ruiz, Daniela [1 ]
Cardenas, Paula [1 ]
Manrique, Leonardo [1 ]
Vega, Daniela [1 ]
Arbelaez, Pablo [1 ]
机构
[1] Univ Los Andes, Ctr Res & Format Artificial Intelligence, Bogota, Colombia
关键词
Spatial transcriptomics; completion; transformers; histology;
D O I
10.1007/978-3-031-72083-3_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial Transcriptomics is a novel technology that aligns histology images with spatially resolved gene expression profiles. Although groundbreaking, it struggles with gene capture yielding high corruption in acquired data. Given potential applications, recent efforts have focused on predicting transcriptomic profiles solely from histology images. However, differences in databases, preprocessing techniques, and training hyperparameters hinder a fair comparison between methods. To address these challenges, we present a systematically curated and processed database collected from 26 public sources, representing an 8.6-fold increase compared to previous works. Additionally, we propose a state-of-the-art transformer-based completion technique for inferring missing gene expression, which significantly boosts the performance of transcriptomic profile predictions across all datasets. Altogether, our contributions constitute the most comprehensive benchmark of gene expression prediction from histology images to date and a stepping stone for future research on spatial transcriptomics.
引用
收藏
页码:91 / 101
页数:11
相关论文
共 50 条
  • [31] Spatial transcriptomics analysis of TSPO gene expression in multiple sclerosis brain
    Martire, Maria Sofia
    Pedrini, Edoardo
    Fagiani, Francesca
    Lin, Jing-Ping
    Filippi, Massimo
    Reich, Daniel
    Absinta, Martina
    MULTIPLE SCLEROSIS JOURNAL, 2023, 29 : 532 - 532
  • [32] HOPE2Net: Integrating histological features and position embeddings in spatially resolved transcriptomics to predict gene expression and pathway activities from histology images in tumors
    Su, Kenong
    Pang, Minxing
    Li, Mingyao
    CANCER RESEARCH, 2022, 82 (12)
  • [33] Edge-relational window-attentional graph neural network for gene expression prediction in spatial transcriptomics analysis
    Chen C.
    Zhang Z.
    Tang P.
    Liu X.
    Huang B.
    Computers in Biology and Medicine, 2024, 174
  • [34] Breast cancer histopathology image-based gene expression prediction using spatial transcriptomics data and deep learning
    Md Mamunur Rahaman
    Ewan K. A. Millar
    Erik Meijering
    Scientific Reports, 13
  • [35] Breast cancer histopathology image-based gene expression prediction using spatial transcriptomics data and deep learning
    Rahaman, Md Mamunur
    Millar, Ewan K. A.
    Meijering, Erik
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [36] Cancer drug sensitivity prediction from routine histology images
    Dawood, Muhammad
    Vu, Quoc Dang
    Young, Lawrence S.
    Branson, Kim
    Jones, Louise
    Rajpoot, Nasir
    Minhas, Fayyaz ul Amir Afsar
    NPJ PRECISION ONCOLOGY, 2024, 8 (01)
  • [37] Cancer drug sensitivity prediction from routine histology images
    Muhammad Dawood
    Quoc Dang Vu
    Lawrence S. Young
    Kim Branson
    Louise Jones
    Nasir Rajpoot
    Fayyaz ul Amir Afsar Minhas
    npj Precision Oncology, 8
  • [38] Spatial transcriptomics reveals gene expression characteristics in invasive micropapillary carcinoma of the breast
    Lv, Jianke
    Shi, Qianqian
    Han, Yunwei
    Li, Weidong
    Liu, Hanjiao
    Zhang, Jingyue
    Niu, Chen
    Gao, Guangshen
    Fu, Yiru
    Zhi, Renyong
    Wu, Kailiang
    Li, Shuai
    Gu, Feng
    Fu, Li
    CELL DEATH & DISEASE, 2021, 12 (12)
  • [39] Gene Expression Within a Human Choroidal Neovascular Membrane Using Spatial Transcriptomics
    Voigt, Andrew P.
    Mullin, Nathaniel K.
    Navratil, Emma M.
    Flamme-Wiese, Miles J.
    Lin, Li-Chun
    Scheetz, Todd E.
    Han, Ian C.
    Stone, Edwin M.
    Tucker, Budd A.
    Mullins, Robert F.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (13)
  • [40] Gene expression profiling of periodontitis-affected gingival tissue by spatial transcriptomics
    Anna Lundmark
    Natalija Gerasimcik
    Tove Båge
    Anders Jemt
    Annelie Mollbrink
    Fredrik Salmén
    Joakim Lundeberg
    Tülay Yucel-Lindberg
    Scientific Reports, 8