Few-label aerial target intention recognition based on self-supervised contrastive learning

被引:0
|
作者
Song, Zihao [1 ]
Zhou, Yan [1 ]
Cai, Yichao [1 ]
Cheng, Wei [1 ]
Wu, Changfei [1 ]
Yin, Jianguo [1 ]
机构
[1] Early Warning Acad, Wuhan, Peoples R China
来源
IET RADAR SONAR AND NAVIGATION | 2025年 / 19卷 / 01期
关键词
air safety; data analysis; decision making; neural nets; recurrent neural nets;
D O I
10.1049/rsn2.12695
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Identifying the intentions of aerial targets is crucial for air situation understanding and decision making. Deep learning, with its powerful feature learning and representation capability, has become a key means to achieve higher performance in aerial target intention recognition (ATIR). However, conventional supervised deep learning methods rely on abundant labelled samples for training, which are difficult to quickly obtain in practical scenarios, posing a significant challenge to the effectiveness of training deep learning models. To address this issue, this paper proposes a novel few-label ATIR method based on deep contrastive learning, which combines the advantages of self-supervised learning and semi-supervised learning. Specifically, leveraging unlabelled samples, we first employ strong and weak data augmentation views and the temporal contrasting module to capture temporally relevant features, whereas the contextual contrasting module is utilised to learn discriminative representations. Subsequently, the network is fine-tuned with a limited set of labelled samples to further refine the learnt representations. Experimental results on an ATIR dataset demonstrate that our method significantly outperforms other few-label classification baselines in terms of recognition accuracy and Macro F1 score when the proportion of labelled samples is as low as 1% and 5%.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Similarity Contrastive Estimation for Self-Supervised Soft Contrastive Learning
    Denize, Julien
    Rabarisoa, Jaonary
    Orcesi, Astrid
    Herault, Romain
    Canu, Stephane
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2705 - 2715
  • [42] Cross-stream contrastive learning for self-supervised skeleton-based action recognition
    Li, Ding
    Tang, Yongqiang
    Zhang, Zhizhong
    Zhang, Wensheng
    IMAGE AND VISION COMPUTING, 2023, 135
  • [43] Contrastive Domain Adaptation: A Self-Supervised Learning Framework for sEMG-Based Gesture Recognition
    Lai, Zhiping
    Kang, Xiaoyang
    Wang, Hongbo
    Zhang, Xueze
    Zhang, Weiqi
    Wang, Fuhao
    2022 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), 2022,
  • [44] Contrastive Transformation for Self-supervised Correspondence Learning
    Wang, Ning
    Zhou, Wengang
    Li, Hougiang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10174 - 10182
  • [45] Self-Supervised Contrastive Learning for Singing Voices
    Yakura, Hiromu
    Watanabe, Kento
    Goto, Masataka
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2022, 30 : 1614 - 1623
  • [46] Temporal Contrastive Learning for Sensor-Based Human Activity Recognition: A Self-Supervised Approach
    Chen, Xiaobing
    Zhou, Xiangwei
    Sun, Mingxuan
    Wang, Hao
    IEEE SENSORS JOURNAL, 2025, 25 (01) : 1839 - 1850
  • [47] Adversarial Self-Supervised Learning for Robust SAR Target Recognition
    Xu, Yanjie
    Sun, Hao
    Chen, Jin
    Lei, Lin
    Ji, Kefeng
    Kuang, Gangyao
    REMOTE SENSING, 2021, 13 (20)
  • [48] Self-Supervised Spectral-Level Contrastive Learning for Hyperspectral Target Detection
    Wang, Yulei
    Chen, Xi
    Zhao, Enyu
    Song, Meiping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [49] Temporal Feature Alignment in Contrastive Self-Supervised Learning for Human Activity Recognition
    Khaertdinov, Bulat
    Asteriadis, Stylianos
    2022 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), 2022,
  • [50] JGCL: Joint Self-Supervised and Supervised Graph Contrastive Learning
    Akkas, Selahattin
    Azad, Ariful
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 1099 - 1105