Similarity Contrastive Estimation for Self-Supervised Soft Contrastive Learning

被引:7
|
作者
Denize, Julien [1 ]
Rabarisoa, Jaonary [1 ]
Orcesi, Astrid [1 ]
Herault, Romain [2 ]
Canu, Stephane [2 ]
机构
[1] Univ Paris Saclay, CEA, LIST, F-91120 Palaiseau, France
[2] Normandie Univ, INSA Rouen, LITIS, F-76801 St Etienne Du Rouvray, France
关键词
D O I
10.1109/WACV56688.2023.00273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contrastive representation learning has proven to be an effective self-supervised learning method. Most successful approaches are based on Noise Contrastive Estimation (NCE) and use different views of an instance as positives that should be contrasted with other instances, called negatives, that are considered as noise. However, several instances in a dataset are drawn from the same distribution and share underlying semantic information. A good data representation should contain relations, or semantic similarity, between the instances. Contrastive learning implicitly learns relations but considering all negatives as noise harms the quality of the learned relations. To circumvent this issue, we propose a novel formulation of contrastive learning using semantic similarity between instances called Similarity Contrastive Estimation (SCE). Our training objective is a soft contrastive learning one. Instead of hard classifying positives and negatives, we estimate from one view of a batch a continuous distribution to push or pull instances based on their semantic similarities. This target similarity distribution is sharpened to eliminate noisy relations. The model predicts for each instance, from another view, the target distribution while contrasting its positive with negatives. Experimental results show that SCE is Top-1 on the ImageNet linear evaluation protocol at 100 pretraining epochs with 72.1% accuracy and is competitive with state-of-the-art algorithms by reaching 75.4% for 200 epochs with multi-crop. We also show that SCE is able to generalize to several tasks. Source code is available here: https://github.com/CEA-LIST/SCE.
引用
收藏
页码:2705 / 2715
页数:11
相关论文
共 50 条
  • [1] Similarity contrastive estimation for image and video soft contrastive self-supervised learning
    Denize, Julien
    Rabarisoa, Jaonary
    Orcesi, Astrid
    Herault, Romain
    [J]. MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [2] Similarity contrastive estimation for image and video soft contrastive self-supervised learning
    Julien Denize
    Jaonary Rabarisoa
    Astrid Orcesi
    Romain Hérault
    [J]. Machine Vision and Applications, 2023, 34
  • [3] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [4] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    [J]. TECHNOLOGIES, 2021, 9 (01)
  • [5] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [6] CONTRASTIVE HEARTBEATS: CONTRASTIVE LEARNING FOR SELF-SUPERVISED ECG REPRESENTATION AND PHENOTYPING
    Wei, Crystal T.
    Hsieh, Ming-En
    Liu, Chien-Liang
    Tseng, Vincent S.
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1126 - 1130
  • [7] On Compositions of Transformations in Contrastive Self-Supervised Learning
    Patrick, Mandela
    Asano, Yuki M.
    Kuznetsova, Polina
    Fong, Ruth
    Henriques, Joao F.
    Zweig, Geoffrey
    Vedaldi, Andrea
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9557 - 9567
  • [8] A comprehensive perspective of contrastive self-supervised learning
    Songcan CHEN
    Chuanxing GENG
    [J]. Frontiers of Computer Science., 2021, (04) - 104
  • [9] Self-supervised contrastive learning on agricultural images
    Guldenring, Ronja
    Nalpantidis, Lazaros
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 191
  • [10] Group Contrastive Self-Supervised Learning on Graphs
    Xu, Xinyi
    Deng, Cheng
    Xie, Yaochen
    Ji, Shuiwang
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3169 - 3180