Orthogonal transcriptional modulation and gene editing using multiple CRISPR-Cas systems

被引:1
|
作者
Brokso, Amalie Dyrelund [1 ]
Bendixen, Louise [1 ]
Famme, Simon [1 ]
Mikkelsen, Kasper [1 ]
Jensen, Trine Ilso [1 ]
Bak, Rasmus O. [1 ]
机构
[1] Aarhus Univ, Dept Biomed, Hoegh Guldbergsgade 10,bldg 1115, DK-8000 Aarhus, Denmark
关键词
ACTIVATION; PROTEIN; TRANSIENT;
D O I
10.1016/j.ymthe.2024.11.024
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR-Cas-based transcriptional activation (CRISPRa) and interference (CRISPRi) enable transient programmable gene regulation by recruitment or fusion of transcriptional regulators to nuclease-deficient Cas (dCas). Here, we expand on the emerging area of transcriptional engineering and RNA delivery by benchmarking combinations of RNA-delivered dCas and transcriptional modulators. We utilize dCas9 from Staphylococcus aureus and Streptococcus pyogenes for orthogonal transcriptional modulation to upregulate one set of genes while downregulating another. We also establish trimodal genetic engineering by combining orthogonal transcriptional regulation with gene knockout by Cas12a (Acidaminococcus; AsCas12a) ribonucleoprotein delivery. To simplify trimodal engineering, we explore optimal parameters for implementing truncated single guide RNAs (sgRNAs) to make use of SpCas9 for knockout and CRISPRa. We find the Cas9 protein/sgRNA ratio to be crucial for avoiding sgRNA cross-complexation and for balancing knockout and activation efficiencies. We demonstrate high efficiencies of trimodal genetic engineering in primary human T cells while preserving basic T cell health and functionality. This study highlights the versatility and potential of complex genetic engineering using multiple CRISPR-Cas systems in a simple one-step process yielding transient transcriptome modulation and permanent DNA changes. We believe such elaborate engineering can be implemented in regenerative medicine and therapies to facilitate more sophisticated treatments.
引用
收藏
页码:71 / 89
页数:19
相关论文
共 50 条
  • [21] RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    Jiang, Wenyan
    Bikard, David
    Cox, David
    Zhang, Feng
    Marraffini, Luciano A.
    NATURE BIOTECHNOLOGY, 2013, 31 (03) : 233 - 239
  • [22] The emerging patent landscape of CRISPR-Cas gene editing technology
    Egelie, Knut J.
    Graff, Gregory D.
    Strand, Sabina P.
    Johansen, Berit
    NATURE BIOTECHNOLOGY, 2016, 34 (10) : 1025 - 1032
  • [23] Advances in miniature CRISPR-Cas proteins and their applications in gene editing
    Wu, Huimin
    Sun, Yixiang
    Wang, Yimai
    Luo, Liqiang
    Song, Yizhi
    ARCHIVES OF MICROBIOLOGY, 2024, 206 (05)
  • [24] Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana
    Amanda Hopes
    Vladimir Nekrasov
    Sophien Kamoun
    Thomas Mock
    Plant Methods, 12
  • [25] RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    Wenyan Jiang
    David Bikard
    David Cox
    Feng Zhang
    Luciano A Marraffini
    Nature Biotechnology, 2013, 31 : 233 - 239
  • [26] Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana
    Hopes, Amanda
    Nekrasov, Vladimir
    Kamoun, Sophien
    Mock, Thomas
    PLANT METHODS, 2016, 12
  • [27] Harnessing CRISPR-Cas system diversity for gene editing technologies
    McKay, Alexander
    Burgio, Gaetan
    JOURNAL OF BIOMEDICAL RESEARCH, 2021, 35 (02): : 91 - 106
  • [28] Using CRISPR-Cas systems as antimicrobials
    Bikard, David
    Barrangou, Rodolphe
    CURRENT OPINION IN MICROBIOLOGY, 2017, 37 : 155 - 160
  • [29] Nanotechnology in Gene Editing: Pioneering CRISPR-Cas Delivery Systems to Tackle Antibiotic Resistance
    Gholamian, Sahar
    Baghaee, Pooya
    Doroudian, Mohammad
    ADVANCED THERAPEUTICS, 2025, 8 (03)
  • [30] Gene regulation by engineered CRISPR-Cas systems
    Fineran, Peter C.
    Dy, Ron L.
    CURRENT OPINION IN MICROBIOLOGY, 2014, 18 : 83 - 89