Pepgen-P15 delivery to bone: A novel 3D printed scaffold for enhanced bone regeneration

被引:0
|
作者
Eshghinejad, Atefeh [1 ]
Varshosaz, Jaleh [1 ]
Najafinezhad, Aliakbar [2 ]
Mirian, Mina [3 ]
机构
[1] Isfahan Univ Med Sci, Novel Drug Delivery Syst Res Ctr, Sch Pharm, Dept Pharmaceut, Esfahan, Iran
[2] Islamic Azad Univ, Adv Mat Res Ctr, Dept Mat Engn, Najafabad Branch, Najafabad, Iran
[3] Isfahan Univ Med Sci, Sch Pharm & Pharmaceut Sci, Dept Pharmaceut Biotechnol, Esfahan, Iran
关键词
3D printing; Polycaprolactone; Bredigite nanoparticle; Xanthan gum; Graphene oxide; Pepgen-P15; MAGNESIUM-MATRIX COMPOSITES; MARROW STROMAL CELLS; IN-VITRO BIOACTIVITY; POROUS SCAFFOLDS; GRAPHENE OXIDE; XANTHAN GUM; OSTEOGENIC DIFFERENTIATION; MECHANICAL-PROPERTIES; TISSUE; FABRICATION;
D O I
10.1016/j.jddst.2024.106280
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Pepgen-P15 is a combination of an organic hydroxyapatite matrix derived from bovine sources, combined with a synthetic peptide known as P-15. The interaction between alpha 2 beta 1 integrin and the P15 chain triggers both intracellular and extracellular signaling pathways, resulting in the production of growth factors. Threedimensional (3D) printing has recently emerged as an innovative strategy for developing personalized therapies in bone tissue regeneration. In this research, various ratios of calcium magnesium silicate (bredigite) nanoparticles were used to modify 3D printed scaffolds made of xanthan gum and polycaprolactone (PCL) via fused deposition modeling (FDM). Scaffolds were subsequently treated with an alkaline solution, covered with graphene oxide, and finally, Pepgen-P15 was applied. the effects of xanthan gum were assessed using swellability and contact angle tests. The results indicated that, the prepared scaffolds exhibited suitable degradation rates, mechanical characteristics, and apatite formation. Alizarin red and alkaline phosphatase assays were also conducted to evaluate the scaffolds' effectiveness in promoting bone cell differentiation during cell culture. Furthermore, the surface of the scaffold was examined to determine the amount of Pepgen-P15 loaded and released. According to the findings, the scaffold composed of 20 % bredigite and 0.3 % graphene oxide, coated with Pepgen-P15, demonstrate optimal mechanical properties, cell adherence, development, and proliferation. Typically, it is a good candidate for use in bone tissue engineering.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Bioinspired Protein/Peptide Loaded 3D Printed PLGA Scaffold Promotes Bone Regeneration
    Song, Xiaoliang
    Li, Xianxian
    Wang, Fengyu
    Wang, Li
    Lv, Li
    Xie, Qing
    Zhang, Xu
    Shao, Xinzhong
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [12] 3D printing of lithium osteogenic bioactive composite scaffold for enhanced bone regeneration
    Wang, Wenzhao
    Wei, Jianlu
    Lei, Dong
    Wang, Suning
    Zhang, Boqing
    Shang, Shenghui
    Bai, Baoshuai
    Zhao, Chenxi
    Zhang, Wencan
    Zhou, Changchun
    Zhou, Hengxing
    Feng, Shiqing
    COMPOSITES PART B-ENGINEERING, 2023, 256
  • [13] Fabrication of 3D printed hydroxyapatite/polymeric bone scaffold
    Jongprateep, Oratai
    Lertapiwong, Nuttapalin
    Chanyapoon, Piraya
    Htet, Thura Lin
    Asavaarunotai, Manasbodin
    Bansiddhi, Ampika
    Panomsuwan, Gasidit
    Inseemeesak, Benjaporn
    Lertworasirikul, Amornrat
    POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2024, 63 (13): : 1780 - 1793
  • [14] Brucine Sulfate, a Novel Bacteriostatic Agent in 3D Printed Bone Scaffold Systems
    Li, Jinying
    Hu, Shi
    Feng, Pei
    Xia, Yang
    Pei, Zihan
    Tian, Jiaxuan
    Jiang, Kun
    Liu, Liang
    Cai, Xiong
    Wu, Ping
    POLYMERS, 2024, 16 (10)
  • [15] Development of 3D Bioactive Composite Scaffold for Bone Regeneration
    Li, J.
    Habibovic, P.
    Moroni, L.
    TISSUE ENGINEERING PART A, 2017, 23 : S90 - S90
  • [16] Electrospun/3D-printed PCL bioactive scaffold for bone regeneration
    Rosales-Ibanez, Raul
    Viera-Ruiz, Alejandro Emmanuel
    Cauich-Rodriguez, Juan Valerio
    Carrillo-Escalante, Hugo Joel
    Gonzalez-Gonzalez, Arely
    Rodriguez-Martinez, Jesus Jiovanni
    Hernandez-Sanchez, Fernando
    POLYMER BULLETIN, 2023, 80 (03) : 2533 - 2552
  • [17] Electrospun/3D-printed PCL bioactive scaffold for bone regeneration
    Raúl Rosales-Ibáñez
    Alejandro Emmanuel Viera-Ruiz
    Juan Valerio Cauich-Rodríguez
    Hugo Joel Carrillo-Escalante
    Arely González-González
    Jesús Jiovanni Rodríguez-Martínez
    Fernando Hernández-Sánchez
    Polymer Bulletin, 2023, 80 : 2533 - 2552
  • [18] Craniofacial Bone Regeneration Guided by 3D Printed Architecture
    Kengla, C.
    Kim, I.
    Cho, J.
    Yoo, J. J.
    Atala, A.
    Lee, S.
    TISSUE ENGINEERING PART A, 2016, 22 : S19 - S19
  • [19] Vascularized 3D printed scaffolds for promoting bone regeneration
    Yan, Yufei
    Chen, Hao
    Zhang, Hongbo
    Guo, Changjun
    Yang, Kai
    Chen, Kaizhe
    Cheng, Ruoyu
    Qian, Niandong
    Sandler, Niklas
    Zhang, Yu Shrike
    Shen, Haokai
    Qi, Jin
    Cui, Wenguo
    Deng, Lianfu
    BIOMATERIALS, 2019, 190 : 97 - 110
  • [20] 3D printed magnetoactive nanocomposite scaffolds for bone regeneration
    Kaviani, Yeganeh
    Eslami, Hossein
    Ansari, Mojtaba
    Poursamar, Seyed Ali
    BIOMEDICAL MATERIALS, 2025, 20 (01)