Well-posedness and regularity properties of 2d β-planestochastic Navier-Stokes equations in a periodic channel

被引:0
|
作者
Cacchio, Yuri [1 ]
Hannani, Amirali [2 ]
Staffilani, Gigliola [3 ]
机构
[1] Gran Sasso Sci Inst, Viale Francesco Crispi, 7, I-67100 Laquila, Italy
[2] Katholieke Univ Leuven, Inst Theoret Fys, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[3] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
关键词
Stochastic Navier-Stokes; beta-plane; Well-posedness; Stationary solution; 2-DIMENSIONAL TURBULENCE; STATIONARY SOLUTIONS; ZONAL JETS; PLANE; SPECTRA; SURFACE; FLOWS;
D O I
10.1007/s40574-024-00451-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the 2d beta-plane stochastic Navier-Stokes equations in a periodic channel. We prove the well-posedness and existence of the stationary measure, as well as certain regularity estimates concerning the support of the stationary measure. The mentioned estimates are crucial for the rigorous study of the cascade phenomena in this equation [8]. To the best of our knowledge, this is the first mathematically rigorous treatment of these equations involving both the stochastic noise and the Coriolis force.
引用
收藏
页码:65 / 84
页数:20
相关论文
共 50 条
  • [31] Well-posedness of evolutionary Navier-Stokes equations with forces of low regularity on two-dimensional domains*
    Casas, Eduardo
    Kunisch, Karl
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [32] Global Well-Posedness of 2D Compressible Navier–Stokes Equations with Large Data and Vacuum
    Quansen Jiu
    Yi Wang
    Zhouping Xin
    Journal of Mathematical Fluid Mechanics, 2014, 16 : 483 - 521
  • [33] On the global well-posedness for the 2D incompressible Keller-Segel-Navier-Stokes equations
    Zhang, Qian
    Zhang, Yehua
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (11):
  • [34] On the well-posedness of 2-D incompressible Navier-Stokes equations with variable viscosity in critical spaces
    Xu, Huan
    Li, Yongsheng
    Zhai, Xiaoping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (08) : 6604 - 6637
  • [35] The well-posedness for the 3D incompressible axisymmetric Navier-Stokes equations in BMO-2
    Guo, Congchong
    Wang, Qianying
    Lu, Ming
    APPLIED MATHEMATICS LETTERS, 2020, 102
  • [36] Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MUD equations
    Zhai, Xiaoping
    Yin, Zhaoyang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) : 1359 - 1412
  • [37] ON THE GLOBAL WELL-POSEDNESS OF 3-D NAVIER-STOKES EQUATIONS WITH VANISHING HORIZONTAL VISCOSITY
    Abidi, Hammadi
    Paicu, Marius
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2018, 31 (5-6) : 329 - 352
  • [38] GLOBAL WELL-POSEDNESS FOR THE 3-D INCOMPRESSIBLE ANISOTROPIC ROTATING NAVIER-STOKES EQUATIONS
    Liu, Yuhui
    Niu, Dongjuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (03): : 1380 - 1401
  • [39] On the well-posedness of 3-D inhomogeneous incompressible Navier-Stokes equations with variable viscosity
    Zhai, Xiaoping
    Yin, Zhaoyang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (03) : 2407 - 2447
  • [40] Dirichlet quotients and 2D periodic Navier-Stokes equations
    Constantin, P
    Foias, C
    Kukavica, I
    Majda, AJ
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (02): : 125 - 153