Cyclic wide subalgebras of semisimple Lie algebras

被引:0
|
作者
Douglas, Andrew [1 ,2 ]
Repka, Joe [3 ]
机构
[1] City Univ New York, New York City Coll Technol, Dept Math, Brooklyn, NY 10017 USA
[2] City Univ New York, CUNY Grad Ctr, Ph D Programs Math & Phys, New York, NY USA
[3] Univ Toronto, Dept Math, Toronto, ON, Canada
关键词
Closed subsets of root systems; cyclic indecomposable modules; Levi decomposable subalgebras; regular subalgebras; wide subalgebras;
D O I
10.1080/00927872.2024.2407993
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let s is an element of+r be a Levi decomposable Lie algebra, with Levi factor s , and radical r . A module V of s is an element of+r is cyclic indecomposable if it is indecomposable and the quotient module V/r<middle dot>V is a simple s -module. A Levi decomposable subalgebra of a semisimple Lie algebra is cyclic wide if the restriction of every simple module of the semisimple Lie algebra to the subalgebra is cyclic indecomposable. We establish a condition for a regular Levi decomposable subalgebra of a semisimple Lie algebra to be cyclic wide. Then, in the case of a regular Levi decomposable subalgebra whose radical is an ad-nilpotent subalgebra, we show that the condition is necessary and sufficient for the subalgebra to be cyclic wide. All Lie algebras, and modules in this article are finite-dimensional, and over the complex numbers.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Wide Subalgebras of Semisimple Lie Algebras
    Panyushev, Dmitri I.
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (03) : 931 - 944
  • [2] Wide Subalgebras of Semisimple Lie Algebras
    Dmitri I. Panyushev
    Algebras and Representation Theory, 2014, 17 : 931 - 944
  • [3] Narrow and wide regular subalgebras of semisimple Lie algebras
    Douglas, Andrew
    Repka, Joe
    JOURNAL OF ALGEBRA, 2025, 664 : 348 - 361
  • [4] Constructing semisimple subalgebras of semisimple Lie algebras
    de Graaf, Willem A.
    JOURNAL OF ALGEBRA, 2011, 325 (01) : 416 - 430
  • [5] Nilpotent subalgebras of semisimple Lie algebras
    Levy, Paul
    McNinch, George
    Testerman, Donna M.
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 477 - 482
  • [6] THE SEMISIMPLE SUBALGEBRAS OF LIE-ALGEBRAS
    FELDMAN, G
    FULTON, T
    MATTHEWS, PT
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (05) : 1230 - 1252
  • [7] Constructing Semisimple Subalgebras of Real Semisimple Lie Algebras
    Faccin, Paolo
    de Graaf, Willem A.
    LIE ALGEBRAS AND RELATED TOPICS, 2015, 652 : 75 - 89
  • [8] Subalgebras of the rank two semisimple Lie algebras
    Douglas, Andrew
    Repka, Joe
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (10): : 2049 - 2075
  • [9] Almost horospherical subalgebras of semisimple Lie algebras
    Smirnov, A. V.
    JOURNAL OF LIE THEORY, 2007, 17 (01) : 91 - 98
  • [10] On derivations of subalgebras of real semisimple Lie algebras
    Ciatti, Paolo
    Cowling, Michael G.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (01) : 233 - 259