Subalgebras of the rank two semisimple Lie algebras

被引:3
|
作者
Douglas, Andrew [1 ,2 ,3 ]
Repka, Joe [3 ]
机构
[1] CUNY, Grad Ctr, PhD Programs Math & Phys, New York, NY 10016 USA
[2] CUNY, New York City Coll Technol, Dept Math, Brooklyn, NY 11210 USA
[3] Univ Toronto, Dept Math, Toronto, ON, Canada
来源
LINEAR & MULTILINEAR ALGEBRA | 2018年 / 66卷 / 10期
基金
加拿大自然科学与工程研究理事会;
关键词
Semisimple Lie algebras; solvable Lie algebras; Levi decomposable algebras; Lie subalgebras; SYMMETRY REDUCTION; CLASSIFICATION;
D O I
10.1080/03081087.2017.1383350
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this expository article, we describe the classification of the subalgebras of the rank 2 semisimple Lie algebras. Their semisimple subalgebras are well-known, and in a recent series of papers, we completed the classification of the subalgebras of the classical rank 2 semisimple Lie algebras. Finally, Mayanskiy finished the classification of the subalgebras of the remaining rank 2 semisimple Lie algebra, the exceptional Lie algebra. We identify subalgebras of the classification in terms of a uniform classification scheme of Lie algebras of low dimension. The classification is up to inner automorphism, and the ground field is the complex numbers.
引用
收藏
页码:2049 / 2075
页数:27
相关论文
共 50 条
  • [1] Constructing semisimple subalgebras of semisimple Lie algebras
    de Graaf, Willem A.
    JOURNAL OF ALGEBRA, 2011, 325 (01) : 416 - 430
  • [2] Nilpotent subalgebras of semisimple Lie algebras
    Levy, Paul
    McNinch, George
    Testerman, Donna M.
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 477 - 482
  • [3] Wide Subalgebras of Semisimple Lie Algebras
    Panyushev, Dmitri I.
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (03) : 931 - 944
  • [4] Wide Subalgebras of Semisimple Lie Algebras
    Dmitri I. Panyushev
    Algebras and Representation Theory, 2014, 17 : 931 - 944
  • [5] THE SEMISIMPLE SUBALGEBRAS OF LIE-ALGEBRAS
    FELDMAN, G
    FULTON, T
    MATTHEWS, PT
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (05) : 1230 - 1252
  • [6] Constructing Semisimple Subalgebras of Real Semisimple Lie Algebras
    Faccin, Paolo
    de Graaf, Willem A.
    LIE ALGEBRAS AND RELATED TOPICS, 2015, 652 : 75 - 89
  • [7] Diamond Representations for Rank Two Semisimple Lie Algebras
    Agrebaoui, Boujemaa
    Arnal, Didier
    Khlifi, Olfa
    JOURNAL OF LIE THEORY, 2009, 19 (02) : 339 - 370
  • [8] Cyclic wide subalgebras of semisimple Lie algebras
    Douglas, Andrew
    Repka, Joe
    COMMUNICATIONS IN ALGEBRA, 2024,
  • [9] Almost horospherical subalgebras of semisimple Lie algebras
    Smirnov, A. V.
    JOURNAL OF LIE THEORY, 2007, 17 (01) : 91 - 98
  • [10] On derivations of subalgebras of real semisimple Lie algebras
    Ciatti, Paolo
    Cowling, Michael G.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (01) : 233 - 259