Narrow and wide regular subalgebras of semisimple Lie algebras

被引:0
|
作者
Douglas, Andrew [1 ,2 ]
Repka, Joe [3 ]
机构
[1] City Univ New York, New York City Coll Technol, Dept Math, Brooklyn, NY 10017 USA
[2] City Univ New York, CUNY Grad Ctr, Ph D Programs Math & Phys, New York, NY 10017 USA
[3] Univ Toronto, Dept Math, Toronto, ON, Canada
关键词
Narrow subalgebras; Wide subalgebras; Regular subalgebras; Regular extreme semisimple Lie; algebras; Root systems; Closed subsets of root systems; Dynkin diagrams; REPRESENTATIONS;
D O I
10.1016/j.jalgebra.2024.09.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subalgebra of a semisimple Lie algebra is wide if every simple module of the semisimple Lie algebra remains indecomposable when restricted to the subalgebra. A subalgebra is narrow if the restrictions of all non-trivial simple modules to the subalgebra have proper decompositions. A semisimple Lie algebra is regular extreme if any regular subalgebra of the semisimple Lie algebra is either narrow or wide. We determine necessary and sufficient conditions for a simple module of a semisimple Lie algebra to remain indecomposable when restricted to a regular subalgebra. As a natural consequence, we establish necessary and sufficient conditions for regular subalgebras to be wide, a result which has already been established by Panyushev for essentially all regular solvable subalgebras [10]. Next, we show that establishing whether or not a regular subalgebra of a simple Lie algebra is wide does not require consideration of all simple modules. It is necessary and sufficient to only consider the adjoint representation. Then, we show that all simple Lie algebras are regular extreme. Finally, we show that no non-simple, semisimple Lie algebra is regular extreme. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:348 / 361
页数:14
相关论文
共 50 条
  • [1] Wide Subalgebras of Semisimple Lie Algebras
    Panyushev, Dmitri I.
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (03) : 931 - 944
  • [2] Wide Subalgebras of Semisimple Lie Algebras
    Dmitri I. Panyushev
    Algebras and Representation Theory, 2014, 17 : 931 - 944
  • [3] Cyclic wide subalgebras of semisimple Lie algebras
    Douglas, Andrew
    Repka, Joe
    COMMUNICATIONS IN ALGEBRA, 2024,
  • [4] Constructing semisimple subalgebras of semisimple Lie algebras
    de Graaf, Willem A.
    JOURNAL OF ALGEBRA, 2011, 325 (01) : 416 - 430
  • [5] Nilpotent subalgebras of semisimple Lie algebras
    Levy, Paul
    McNinch, George
    Testerman, Donna M.
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 477 - 482
  • [6] THE SEMISIMPLE SUBALGEBRAS OF LIE-ALGEBRAS
    FELDMAN, G
    FULTON, T
    MATTHEWS, PT
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (05) : 1230 - 1252
  • [7] Constructing Semisimple Subalgebras of Real Semisimple Lie Algebras
    Faccin, Paolo
    de Graaf, Willem A.
    LIE ALGEBRAS AND RELATED TOPICS, 2015, 652 : 75 - 89
  • [8] Subalgebras of the rank two semisimple Lie algebras
    Douglas, Andrew
    Repka, Joe
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (10): : 2049 - 2075
  • [9] Almost horospherical subalgebras of semisimple Lie algebras
    Smirnov, A. V.
    JOURNAL OF LIE THEORY, 2007, 17 (01) : 91 - 98
  • [10] On derivations of subalgebras of real semisimple Lie algebras
    Ciatti, Paolo
    Cowling, Michael G.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (01) : 233 - 259