Dry carbon nanotube wrapping of Ni-rich layered oxide cathodes for lithium-ion batteries

被引:0
|
作者
Ho, Van-Chuong [1 ]
Huynh, Thanh N. [2 ]
Jung, Hun-Gi [3 ,4 ]
Kim, Jung Ho [5 ]
Oh, Seung-Min [6 ]
Kim, Young-Jun [2 ,7 ]
Mun, Junyoung [1 ,3 ,4 ,8 ]
机构
[1] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 2066, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, SKKU Adv Inst Nano Technol SAINT, Suwon, South Korea
[3] Korea Inst Sci & Technol, Energy Storage Res Ctr, Seoul 02792, South Korea
[4] Sungkyunkwan Univ, KIST SKKU Carbon Neutral Res Ctr, Suwon 16419, South Korea
[5] Univ Wollongong, Inst Superconducting & Elect Mat, Fac Engn & Informat Sci, Squires Way, North Wollongong, NSW 2500, Australia
[6] Hyundai Motor Co, Res & Dev Div, Battery Cell Dev Team 1, 150 Hyundaiyeonguso Ro, Hwaseong Si 18280, Gyeonggi Do, South Korea
[7] Sungkyunkwan Univ, Dept Nano Engn, Suwon, South Korea
[8] Sungkyunkwan Univ, SKKU Inst Energy Sci & Technol SIEST, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
关键词
Dry coating; CNT coating; High electrical conductivity; High-energy density; Lithium-ion battery; LI-ION; PERFORMANCE; ELECTRODES; SITU;
D O I
10.1016/j.susmat.2025.e01287
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The highly conductive carbon nanotubes (CNT) coating for the Ni-rich layered oxide cathode materials is proposed for use in lithium-ion batteries (LIBs). Unlike the conventional carbon coating method, a novel dry CNT coating technique onto the active material particle without heating is developed to avoid carbo-thermal reduction causing oxide deterioration by CO2 generation at high coating temperature. The shear stress of dry coating delivers sculpted short lengths of coating CNTs, which ensure high coating coverage as well as optimal electron transportation and distributions. Dry-tailored CNT coatings have multi-functions of mitigating surface degradation and improving electrical conductivity. With a small content of inactive conducting agents in the electrode, CNT-coated cathodes enhance cyclability and rate capability. Ni-rich LiNi0.89Co0.06Mn0.05O2 (NCM) powder with a small amount of CNT coating significantly improves electrochemical performance than that of conventional electrodes using the same amount of conductive additives such as super-C and CNT. The CNT coating on NCM also enables graphite (Gr||NCM) full cells to have a high specific energy density, which is improved from 284.7 to 308.7 Wh kg- 1, simultaneously achieving an excellent energy retention of 75.0 % after 250 cycles. This research offers an efficient dry coating technique for achieving high energy density in LIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Comparative Investigation of Single Crystal and Polycrystalline Ni-Rich NCMs as Cathodes for Lithium-Ion Batteries
    Xianming Deng
    Rui Zhang
    Kai Zhou
    Ziyao Gao
    Wei He
    Lihan Zhang
    Cuiping Han
    Feiyu Kang
    Baohua Li
    Energy & Environmental Materials , 2023, (03) : 100 - 106
  • [42] A Comparative Investigation of Single Crystal and Polycrystalline Ni-Rich NCMs as Cathodes for Lithium-Ion Batteries
    Deng, Xianming
    Zhang, Rui
    Zhou, Kai
    Gao, Ziyao
    He, Wei
    Zhang, Lihan
    Han, Cuiping
    Kang, Feiyu
    Li, Baohua
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (03)
  • [43] Simultaneously Dual Modification of Ni-Rich Layered Oxide Cathode for High-Energy Lithium-Ion Batteries
    Yang, Huiping
    Wu, Hong-Hui
    Ge, Mingyuan
    Li, Lingjun
    Yuan, Yifei
    Yao, Qi
    Chen, Jie
    Xia, Lingfeng
    Zheng, Jiangming
    Chen, Zhaoyong
    Duan, Junfei
    Kisslinger, Kim
    Zeng, Xiao Cheng
    Lee, Wah-Keat
    Zhang, Qiaobao
    Lu, Jun
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (13)
  • [44] Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries
    Sun, Yang-Kook
    Lee, Dong-Ju
    Lee, Yun Jung
    Chen, Zonghai
    Myung, Seung-Taek
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (21) : 11434 - 11440
  • [45] Doping Strategy in Developing Ni-Rich Cathodes for High-Performance Lithium-Ion Batteries
    Lee, Soo-Been
    Park, Nam-Yung
    Park, Geon-Tae
    Kim, Un-Hyuck
    Sohn, Sung-June
    Kang, Min-Seok
    Ribas, Rogerio M.
    Monteiro, Robson S.
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2024, 9 (02) : 740 - 747
  • [46] Magnesium Substitution in Ni-Rich NMC Layered Cathodes for High-Energy Lithium Ion Batteries
    Gomez-Martin, Aurora
    Reissig, Friederike
    Frankenstein, Lars
    Heidbuchel, Marcel
    Winter, Martin
    Placke, Tobias
    Schmuch, Richard
    ADVANCED ENERGY MATERIALS, 2022, 12 (08)
  • [47] Building a Self-Adaptive Protective Layer on Ni-Rich Layered Cathodes to Enhance the Cycle Stability of Lithium-Ion Batteries
    Yang, Hua
    Gao, Rui-Min
    Zhang, Xu-Dong
    Liang, Jia-Yan
    Meng, Xin-Hai
    Lu, Zhuo-Ya
    Cao, Fei-Fei
    Ye, Huan
    ADVANCED MATERIALS, 2022, 34 (38)
  • [48] Towards Ni-rich layered oxides cathodes with low Li/Ni intermixing by mild molten-salt ion exchange for lithium-ion batteries
    Luo, Yu-hong
    Pan, Qing-lin
    Wei, Han-xin
    Huang, Ying-de
    Tang, Lin-bo
    Wang, Zhen-yu
    He, Zhen-jiang
    Yan, Cheng
    Mao, Jing
    Dai, Ke-hua
    Zhang, Xia-hui
    Zheng, Jun-chao
    Nano Energy, 2022, 102
  • [49] The Formation, Detriment and Solution of Residual Lithium Compounds on Ni-Rich Layered Oxides in Lithium-Ion Batteries
    Chen, Anqi
    Wang, Kun
    Li, Jiaojiao
    Mao, Qinzhong
    Xiao, Zhen
    Zhu, Dongmin
    Wang, Guoguang
    Liao, Peng
    He, Jiarui
    You, Ya
    Xia, Yang
    FRONTIERS IN ENERGY RESEARCH, 2020, 8 (08):
  • [50] Towards Ni-rich layered oxides cathodes with low Li/Ni intermixing by mild molten-salt ion exchange for lithium-ion batteries
    Luo, Yu-hong
    Pan, Qing-lin
    Wei, Han-xin
    Huang, Ying-de
    Tang, Lin-bo
    Wang, Zhen-yu
    He, Zhen-jiang
    Yan, Cheng
    Mao, Jing
    Dai, Ke-hua
    Zhang, Xia-hui
    Zheng, Jun-chao
    NANO ENERGY, 2022, 102