Building a Self-Adaptive Protective Layer on Ni-Rich Layered Cathodes to Enhance the Cycle Stability of Lithium-Ion Batteries

被引:54
|
作者
Yang, Hua [1 ]
Gao, Rui-Min [1 ]
Zhang, Xu-Dong [2 ]
Liang, Jia-Yan [2 ]
Meng, Xin-Hai [2 ]
Lu, Zhuo-Ya [2 ]
Cao, Fei-Fei [1 ]
Ye, Huan [1 ]
机构
[1] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci BNLMS, CAS Res Educ Ctr Excellence Mol Sci,CAS Key Lab M, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
cathodes; high stability; intergranular cracking; lithium-ion batteries; protective layers; STATE;
D O I
10.1002/adma.202204835
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layered Ni-rich lithium transition metal oxides are promising battery cathodes due to their high specific capacity, but their poor cycling stability due to intergranular cracks in secondary particles restricts their practical applications. Surface engineering is an effective strategy for improving a cathode's cycling stability, but most reported surface coatings cannot adapt to the dynamic volume changes of cathodes. Herein, a self-adaptive polymer (polyrotaxane-co-poly(acrylic acid)) interfacial layer is built on LiNi0.6Co0.2Mn0.2O2. The polymer layer with a slide-ring structure exhibits high toughness and can withstand the stress caused by particle volume changes, which can prevent the cracking of particles. In addition, the slide-ring polymer acts as a physicochemical barrier that suppresses surface side reactions and alleviates the dissolution of transition metallic ions, which ensures stable cycling performance. Thus, the as-prepared cathode shows significantly improved long-term cycling stability in situations in which cracks may easily occur, especially under high-rate, high-voltage, and high-temperature conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Microstructures of layered Ni-rich cathodes for lithium-ion batteries
    Lu, Jingyu
    Xu, Chao
    Dose, Wesley
    Dey, Sunita
    Wang, Xihao
    Wu, Yehui
    Li, Deping
    Ci, Lijie
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (09) : 4707 - 4740
  • [2] Ni-rich layered cathodes for lithium-ion batteries: From challenges to the future
    Yang, Jun
    Liang, Xinghui
    Ryu, Hoon-Hee
    Yoon, Chong S.
    Sun, Yang-Kook
    ENERGY STORAGE MATERIALS, 2023, 63
  • [3] Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries
    Pengfei Yan
    Jianming Zheng
    Jian Liu
    Biqiong Wang
    Xiaopeng Cheng
    Yuefei Zhang
    Xueliang Sun
    Chongmin Wang
    Ji-Guang Zhang
    Nature Energy, 2018, 3 : 600 - 605
  • [4] Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries
    Yan, Pengfei
    Zheng, Jianming
    Liu, Jian
    Wang, Biqiong
    Cheng, Xiaopeng
    Zhang, Yuefei
    Sun, Xueliang
    Wang, Chongmin
    Zhang, Ji-Guang
    NATURE ENERGY, 2018, 3 (07): : 600 - 605
  • [5] Effect of Residual Lithium Rearrangement on Ni-rich Layered Oxide Cathodes for Lithium-Ion Batteries
    Park, Jun-Ho
    Choi, Byungjin
    Kang, Yoon-Sok
    Park, Seong Yong
    Yun, Dong Jin
    Park, Insun
    Ha Shim, Jae
    Park, Jin-Hwan
    Han, Heung Nam
    Park, Kwangjin
    ENERGY TECHNOLOGY, 2018, 6 (07) : 1361 - 1369
  • [6] An in-depth understanding of chemomechanics in Ni-rich layered cathodes for lithium-ion batteries
    Yoon, Sangho
    Park, Hyun Gyu
    Koo, Sojung
    Hwang, Juncheol
    Lee, Youbean
    Park, Kwangjin
    Kim, Duho
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939
  • [7] Graphene collage on Ni-rich layered oxide cathodes for advanced lithium-ion batteries
    Park, Chang Won
    Lee, Jung-Hun
    Seo, Jae Kwon
    Jo, Won Young
    Whang, Dongmok
    Hwang, Soo Min
    Kim, Young-Jun
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [8] Revisiting the role of Zr doping in Ni-rich layered cathodes for lithium-ion batteries
    Jung, Chul-Ho
    Li, Qingtian
    Kim, Do-Hoon
    Eum, Donggun
    Ko, Donghyun
    Choi, Jonghyun
    Lee, Jongwon
    Kim, Kyeong-Ho
    Kang, Kisuk
    Yang, Wanli
    Hong, Seong-Hyeon
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (32) : 17415 - 17424
  • [9] Graphene collage on Ni-rich layered oxide cathodes for advanced lithium-ion batteries
    Chang Won Park
    Jung-Hun Lee
    Jae Kwon Seo
    Won Young Jo
    Dongmok Whang
    Soo Min Hwang
    Young-Jun Kim
    Nature Communications, 12
  • [10] Gradient-porous-structured Ni-rich layered oxide cathodes with high specific energy and cycle stability for lithium-ion batteries
    Li, Zhiyuan
    Wang, Yong
    Wang, Jing
    Wu, Changxu
    Wang, Weina
    Chen, Yilin
    Hu, Chenji
    Mo, Kai
    Gao, Tian
    He, Yu-Shi
    Ren, Zhouhong
    Zhang, Yixiao
    Liu, Xi
    Liu, Na
    Chen, Liwei
    Wu, Kai
    Shen, Chongheng
    Ma, Zi-Feng
    Li, Linsen
    NATURE COMMUNICATIONS, 2024, 15 (01)