A Huber Loss Minimization Approach to Byzantine Robust Federated Learning

被引:0
|
作者
Zhao, Puning [1 ]
Yu, Fei [1 ]
Wan, Zhiguo [1 ]
机构
[1] Zhejiang Lab, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning systems are susceptible to adversarial attacks. To combat this, we introduce a novel aggregator based on Huber loss minimization, and provide a comprehensive theoretical analysis. Under independent and identically distributed (i.i.d) assumption, our approach has several advantages compared to existing methods. Firstly, it has optimal dependence on., which stands for the ratio of attacked clients. Secondly, our approach does not need precise knowledge of.. Thirdly, it allows different clients to have unequal data sizes. We then broaden our analysis to include non-i.i.d data, such that clients have slightly different distributions.
引用
收藏
页码:21806 / 21814
页数:9
相关论文
共 50 条
  • [31] Local Model Poisoning Attacks to Byzantine-Robust Federated Learning
    Fang, Minghong
    Cao, Xiaoyu
    Jia, Jinyuan
    Gong, Neil Nenqiang
    PROCEEDINGS OF THE 29TH USENIX SECURITY SYMPOSIUM, 2020, : 1623 - 1640
  • [32] Robust Federated Learning: Maximum Correntropy Aggregation Against Byzantine Attacks
    Luan, Zhirong
    Li, Wenrui
    Liu, Meiqin
    Chen, Badong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 62 - 75
  • [33] FedCom: Byzantine-Robust Federated Learning Using Data Commitment
    Zhao, Bo
    Wang, Tao
    Fang, Liming
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 33 - 38
  • [34] Byzantine-Robust Federated Learning Based on Dynamic Gradient Filtering
    Colosimo, Francesco
    De Rango, Floriano
    20TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC 2024, 2024, : 1062 - 1067
  • [35] Using Third-Party Auditor to Help Federated Learning: An Efficient Byzantine-Robust Federated Learning
    Zhang, Zhuangzhuang
    Wu, Libing
    He, Debiao
    Li, Jianxin
    Lu, Na
    Wei, Xuejiang
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (06): : 848 - 861
  • [36] Robust learning of Huber loss under weak conditional moment
    Huang, Shouyou
    Neurocomputing, 2022, 507 : 191 - 198
  • [37] Robust learning of Huber loss under weak conditional moment
    Huang, Shouyou
    NEUROCOMPUTING, 2022, 507 : 191 - 198
  • [38] FLGuard: Byzantine-Robust Federated Learning via Ensemble of Contrastive Models
    Lee, Younghan
    Cho, Yungi
    Han, Woorim
    Bae, Ho
    Paek, Yunheung
    COMPUTER SECURITY - ESORICS 2023, PT IV, 2024, 14347 : 65 - 84
  • [39] FedInv: Byzantine-Robust Federated Learning by Inversing Local Model Updates
    Zhao, Bo
    Sun, Peng
    Wang, Tao
    Jiang, Keyu
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 9171 - 9179
  • [40] BFLMeta: Blockchain-Empowered Metaverse with Byzantine-Robust Federated Learning
    Vu Tuan Truong
    Hoang, Duc N. M.
    Long Bao Le
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 5537 - 5542