A Huber Loss Minimization Approach to Byzantine Robust Federated Learning

被引:0
|
作者
Zhao, Puning [1 ]
Yu, Fei [1 ]
Wan, Zhiguo [1 ]
机构
[1] Zhejiang Lab, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning systems are susceptible to adversarial attacks. To combat this, we introduce a novel aggregator based on Huber loss minimization, and provide a comprehensive theoretical analysis. Under independent and identically distributed (i.i.d) assumption, our approach has several advantages compared to existing methods. Firstly, it has optimal dependence on., which stands for the ratio of attacked clients. Secondly, our approach does not need precise knowledge of.. Thirdly, it allows different clients to have unequal data sizes. We then broaden our analysis to include non-i.i.d data, such that clients have slightly different distributions.
引用
收藏
页码:21806 / 21814
页数:9
相关论文
共 50 条
  • [21] FLForest: Byzantine-robust Federated Learning through Isolated Forest
    Wang, Tao
    Zhao, Bo
    Fang, Liming
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 296 - 303
  • [22] Byzantine-robust Federated Learning via Cosine Similarity Aggregation
    Zhu, Tengteng
    Guo, Zehua
    Yao, Chao
    Tan, Jiaxin
    Dou, Songshi
    Wang, Wenrun
    Han, Zhenzhen
    COMPUTER NETWORKS, 2024, 254
  • [23] Byzantine-Robust Aggregation in Federated Learning Empowered Industrial IoT
    Li, Shenghui
    Ngai, Edith
    Voigt, Thiemo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1165 - 1175
  • [24] FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping
    Cao, Xiaoyu
    Fang, Minghong
    Liu, Jia
    Gong, Neil Zhenqiang
    28TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2021), 2021,
  • [25] Robust Federated Learning: Maximum Correntropy Aggregation Against Byzantine Attacks
    Luan, Zhirong
    Li, Wenrui
    Liu, Meiqin
    Chen, Badong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 62 - 75
  • [26] A Privacy Preserving and Byzantine Robust Collaborative Federated Learning Method Design
    Yang, Nuocheng
    Wang, Sihua
    Chen, Mingzhe
    Yin, Changchuan
    Brinton, Christopher G.
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 3598 - 3603
  • [27] An Experimental Study of Byzantine-Robust Aggregation Schemes in Federated Learning
    Li, Shenghui
    Ngai, Edith
    Voigt, Thiemo
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 975 - 988
  • [28] Lightweight Byzantine-Robust and Privacy-Preserving Federated Learning
    Lu, Zhi
    Lu, Songfeng
    Cui, Yongquan
    Wu, Junjun
    Nie, Hewang
    Xiao, Jue
    Yi, Zepu
    EURO-PAR 2024: PARALLEL PROCESSING, PART II, EURO-PAR 2024, 2024, 14802 : 274 - 287
  • [29] Efficient and Privacy-Preserving Byzantine-robust Federated Learning
    Luan, Shijie
    Lu, Xiang
    Zhang, Zhuangzhuang
    Chang, Guangsheng
    Guo, Yunchuan
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2202 - 2208
  • [30] SIREN: Byzantine-robust Federated Learning via Proactive Alarming
    Guo, Hanxi
    Wang, Hao
    Song, Tao
    Hua, Yang
    Lv, Zhangcheng
    Jin, Xiulang
    Xue, Zhengui
    Ma, Ruhui
    Guan, Haibing
    PROCEEDINGS OF THE 2021 ACM SYMPOSIUM ON CLOUD COMPUTING (SOCC '21), 2021, : 47 - 60