Deep Multiagent Reinforcement Learning for Task Offloading and Resource Allocation in Satellite Edge Computing

被引:1
|
作者
Jia, Min [1 ]
Zhang, Liang [1 ]
Wu, Jian [1 ]
Guo, Qing [1 ]
Zhang, Guowei [2 ]
Gu, Xuemai [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[2] Qufu Normal Univ, Sch Cyber Sci Engn, Jining 273165, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2025年 / 12卷 / 04期
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning; multiagent; resource allocation; satellite edge computing; task offloading; MOBILE-EDGE; CHALLENGES;
D O I
10.1109/JIOT.2024.3482290
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a supplement to terrestrial communication networks, satellite edge computing can break through geographical limitations and provide on-orbit computing services for people in some remote areas to achieve truly seamless global coverage. Considering time-varying channels, queue delays, and dynamic loads of edge computing satellites, we propose a multiagent task offloading and resource allocation (MATORA) algorithm with weighted latency as the optimization goal. It is a mixed integer nonlinear problem decoupled into task offloading and resource allocation subproblems. For the offloading subproblem, we propose a distributed multiagent deep reinforcement learning algorithm, and each agent generates its own offloading decision without knowing the prior knowledge of others. We show that the resource allocation problem is convex and can be solved using convex optimization methods. The experiment shows that the proposed algorithm can better adapt to the change of channel and the dynamic load of edge computing satellite, and it can effectively reduce task latency and task drop rate.
引用
收藏
页码:3832 / 3845
页数:14
相关论文
共 50 条
  • [1] Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA
    Alfakih, Taha
    Hassan, Mohammad Mehedi
    Gumaei, Abdu
    Savaglio, Claudio
    Fortino, Giancarlo
    IEEE ACCESS, 2020, 8 : 54074 - 54084
  • [2] Offloading and Resource Allocation With General Task Graph in Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Yan, Jia
    Bi, Suzhi
    Zhang, Ying-Jun Angela
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (08) : 5404 - 5419
  • [3] Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge Computing and Networks
    Liu, Yi
    Yu, Huimin
    Xie, Shengli
    Zhang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (11) : 11158 - 11168
  • [4] Deep Reinforcement Learning for Task Offloading in Edge Computing
    Xie, Bo
    Cui, Haixia
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 250 - 254
  • [5] Multiagent Deep Reinforcement Learning for Task Offloading and Resource Allocation in Cybertwin-Based Networks
    Hou, Wenjing
    Wen, Hong
    Song, Huanhuan
    Lei, Wenxin
    Zhang, Wei
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (22) : 16256 - 16268
  • [6] Multi-user Edge Computing Task offloading Scheduling and Resource Allocation Based on Deep Reinforcement Learning
    Kuang Z.-F.
    Chen Q.-L.
    Li L.-F.
    Deng X.-H.
    Chen Z.-G.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (04): : 812 - 824
  • [7] Task Offloading With Service Migration for Satellite Edge Computing: A Deep Reinforcement Learning Approach
    Wu, Haonan
    Yang, Xiumei
    Bu, Zhiyong
    IEEE ACCESS, 2024, 12 : 25844 - 25856
  • [8] Joint Offloading and Resource Allocation Using Deep Reinforcement Learning in Mobile Edge Computing
    Zhang, Xinjie
    Zhang, Xinglin
    Yang, Wentao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3454 - 3466
  • [9] A Joint Resource Allocation and Task Offloading Algorithm in Satellite Edge Computing
    Chen, Zhuoer
    Zhang, Deyu
    Cai, Weijun
    Luo, Wei
    Tang, Yin
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT III, 2024, 14489 : 358 - 377
  • [10] Task Offloading and Resource Allocation Strategy Based on Deep Learning for Mobile Edge Computing
    Yu, Zijia
    Xu, Xu
    Zhou, Wei
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022