Task Offloading With Service Migration for Satellite Edge Computing: A Deep Reinforcement Learning Approach

被引:0
|
作者
Wu, Haonan [1 ]
Yang, Xiumei [1 ]
Bu, Zhiyong [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[2] Chinese Acad Sci, Key Lab Wireless Sensor Network & Commun, Shanghai 200050, Peoples R China
关键词
Satellites; Task analysis; Low earth orbit satellites; Delays; Servers; Internet of Things; Low latency communication; Edge computing; Deep reinforcement learning; Satellite edge computing (SEC); task offloading; service migration; deep reinforcement learning (DRL); TERRESTRIAL NETWORKS; MOBILITY-AWARE; ALLOCATION; PLACEMENT; ACCESS; 5G;
D O I
10.1109/ACCESS.2024.3367128
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Satellite networks with edge computing servers promise to provide ubiquitous and low-latency computing services for the Internet of Things (IoT) applications in the future satellite-terrestrial integrated network (STIN). For some emerging IoT applications, the services require real-time user-dependent state information, such as time-varying task states and user-specific configurations, to maintain service continuity. Service migration is crucial for dynamic task offloading to synchronize the user-dependent state information between computing servers. However, how to offload computing tasks at low latency with the impact of service migration remains challenging due to the high-speed movement and load imbalance of low Earth orbit (LEO) satellite networks. In this work, we investigate the task offloading problem with service migration for satellite edge computing (SEC) using inter-satellite cooperation. Facing dynamic service requirements with limited on-board bandwidth, energy, and storage resources of satellite networks, we formulate the problem with the aim of minimizing the service delay to optimize the offloading path selection. By leveraging a deep reinforcement learning (DRL) approach, we propose a distributed scheme based on the Dueling-Double-Deep-Q-Learning (D3QN) algorithm. Simulation results show that the proposed scheme can effectively reduce the service delay, and outperform the benchmark algorithms.
引用
下载
收藏
页码:25844 / 25856
页数:13
相关论文
共 50 条
  • [1] Adaptive Task Offloading in Coded Edge Computing: A Deep Reinforcement Learning Approach
    Nguyen Van Tam
    Nguyen Quang Hieu
    Nguyen Thi Thanh Van
    Nguyen Cong Luong
    Niyato, Dusit
    Kim, Dong In
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (12) : 3878 - 3882
  • [2] Service migration in mobile edge computing: A deep reinforcement learning approach
    Wang, Hongman
    Li, Yingxue
    Zhou, Ao
    Guo, Yan
    Wang, Shangguang
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2023, 36 (01)
  • [3] Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2449 - 2461
  • [4] Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems
    Tang, Ming
    Wong, Vincent W. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (06) : 1985 - 1997
  • [5] A bandwidth-fair migration-enabled task offloading for vehicular edge computing: a deep reinforcement learning approach
    Tang, Chaogang
    Li, Zhao
    Xiao, Shuo
    Wu, Huaming
    Chen, Wei
    CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION, 2024, 6 (03) : 255 - 270
  • [6] Deep Reinforcement Learning-based Task Offloading in Satellite-Terrestrial Edge Computing Networks
    Zhu, Dali
    Liu, Haitao
    Li, Ting
    Sun, Jiyan
    Liang, Jie
    Zhang, Hangsheng
    Geng, Liru
    Liu, Yudong
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [7] Privacy-preserving task offloading in mobile edge computing: A deep reinforcement learning approach
    Xia, Fanglue
    Chen, Ying
    Huang, Jiwei
    SOFTWARE-PRACTICE & EXPERIENCE, 2024, 54 (09): : 1774 - 1792
  • [8] Lyapunov-guided Deep Reinforcement Learning for service caching and task offloading in Mobile Edge Computing
    Li, Nianxin
    Zhai, Linbo
    Ma, Zeyao
    Zhu, Xiumin
    Li, Yumei
    COMPUTER NETWORKS, 2024, 250
  • [9] Deep Reinforcement Learning for Task Offloading in Edge Computing Assisted Power IoT
    Hu, Jiangyi
    Li, Yang
    Zhao, Gaofeng
    Xu, Bo
    Ni, Yiyang
    Zhao, Haitao
    IEEE ACCESS, 2021, 9 : 93892 - 93901
  • [10] Task graph offloading via deep reinforcement learning in mobile edge computing
    Liu, Jiagang
    Mi, Yun
    Zhang, Xinyu
    Li, Xiaocui
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 545 - 555