Deep Multiagent Reinforcement Learning for Task Offloading and Resource Allocation in Satellite Edge Computing

被引:1
|
作者
Jia, Min [1 ]
Zhang, Liang [1 ]
Wu, Jian [1 ]
Guo, Qing [1 ]
Zhang, Guowei [2 ]
Gu, Xuemai [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[2] Qufu Normal Univ, Sch Cyber Sci Engn, Jining 273165, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2025年 / 12卷 / 04期
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning; multiagent; resource allocation; satellite edge computing; task offloading; MOBILE-EDGE; CHALLENGES;
D O I
10.1109/JIOT.2024.3482290
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a supplement to terrestrial communication networks, satellite edge computing can break through geographical limitations and provide on-orbit computing services for people in some remote areas to achieve truly seamless global coverage. Considering time-varying channels, queue delays, and dynamic loads of edge computing satellites, we propose a multiagent task offloading and resource allocation (MATORA) algorithm with weighted latency as the optimization goal. It is a mixed integer nonlinear problem decoupled into task offloading and resource allocation subproblems. For the offloading subproblem, we propose a distributed multiagent deep reinforcement learning algorithm, and each agent generates its own offloading decision without knowing the prior knowledge of others. We show that the resource allocation problem is convex and can be solved using convex optimization methods. The experiment shows that the proposed algorithm can better adapt to the change of channel and the dynamic load of edge computing satellite, and it can effectively reduce task latency and task drop rate.
引用
收藏
页码:3832 / 3845
页数:14
相关论文
共 50 条
  • [31] Deep Reinforcement Learning for Task Offloading in Edge Computing Assisted Power IoT
    Hu, Jiangyi
    Li, Yang
    Zhao, Gaofeng
    Xu, Bo
    Ni, Yiyang
    Zhao, Haitao
    IEEE ACCESS, 2021, 9 : 93892 - 93901
  • [32] Task graph offloading via deep reinforcement learning in mobile edge computing
    Liu, Jiagang
    Mi, Yun
    Zhang, Xinyu
    Li, Xiaocui
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 545 - 555
  • [33] Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
    Lu H.
    Gu C.
    Luo F.
    Ding W.
    Yang T.
    Zheng S.
    Gu, Chunhua (chgu@ecust.edu.cn), 1600, Science Press (57): : 1539 - 1554
  • [34] Adaptive Task Offloading in Coded Edge Computing: A Deep Reinforcement Learning Approach
    Nguyen Van Tam
    Nguyen Quang Hieu
    Nguyen Thi Thanh Van
    Nguyen Cong Luong
    Niyato, Dusit
    Kim, Dong In
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (12) : 3878 - 3882
  • [35] Task offloading of edge computing network based on Lyapunov and deep reinforcement learning
    Qiao, Xudong
    Zhou, Yongxin
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1054 - 1059
  • [36] Task offloading in vehicular edge computing networks via deep reinforcement learning
    Karimi, Elham
    Chen, Yuanzhu
    Akbari, Behzad
    COMPUTER COMMUNICATIONS, 2022, 189 : 193 - 204
  • [37] Dependent Task Offloading in Edge Computing Using GNN and Deep Reinforcement Learning
    Cao, Zequn
    Deng, Xiaoheng
    Yue, Sheng
    Jiang, Ping
    Ren, Ju
    Gui, Jinsong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 21632 - 21646
  • [38] Prioritized Task Offloading in Vehicular Edge Computing Using Deep Reinforcement Learning
    Uddin, Ashab
    Sakr, Ahmed Hamdi
    Zhang, Ning
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [39] Task Offloading Optimization in Mobile Edge Computing based on Deep Reinforcement Learning
    Silva, Carlos
    Magaia, Naercio
    Grilo, Antonio
    PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023, 2023, : 109 - 118
  • [40] Asynchronous Deep Reinforcement Learning for Collaborative Task Computing and On-Demand Resource Allocation in Vehicular Edge Computing
    Liu L.
    Feng J.
    Mu X.
    Pei Q.
    Lan D.
    Xiao M.
    IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (12) : 15513 - 15526