Deep Learning for Automated Ischemic Stroke Lesion Segmentation from Multi-spectral MRI

被引:0
|
作者
Dogru, Dilan [1 ]
Ozdemir, Mehmet Akif [1 ]
Guren, Onan [1 ]
机构
[1] Izmir Katip Celebi Univ, Dept Biomed Engn, Izmir, Turkiye
关键词
Ischemic Stroke; Segmentation; MRI; Deep Learning; U-net; CNN;
D O I
10.23919/EUSIPCO63174.2024.10715216
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Stroke is one of the most prevalent diseases that cause long-term disability and mortality worldwide. Precisely detecting stroke lesions is crucial to diagnosing disease and planning potential treatments. Applications that assist specialists in automated lesion detection can play an important role in preventing time-consuming tasks. For quantitatively detecting strokes, specialists frequently use magnetic resonance imaging (MRI). In light of these considerations, we present a five-layer modified recurrent U-net model designed for the automated segmentation of ischemic stroke lesions in multi-spectral MRIs. The methodology implemented includes individually trained case MRI slices using the leave-one-out cross-validation (LOOCV) approach. The effectiveness of the developed model was evaluated by subject-wise metrics in comparison with the ground truth, yielding a very competitive average dice score (DSC) of 0.748.
引用
收藏
页码:1392 / 1396
页数:5
相关论文
共 50 条
  • [41] ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
    Maier, Oskar
    Menze, Bjoern H.
    von der Gablentz, Janina
    Hani, Levin
    Heinrich, Mattias P.
    Liebrand, Matthias
    Winzeck, Stefan
    Basit, Abdul
    Bentley, Paul
    Chen, Liang
    Christiaens, Daan
    Dutil, Francis
    Egger, Karl
    Feng, Chaolu
    Glocker, Ben
    Goetz, Michael
    Haeck, Tom
    Halme, Hanna-Leena
    Havaei, Mohammad
    Iftekharuddin, Khan M.
    Jodoin, Pierre-Marc
    Kamnitsas, Konstantinos
    Kellner, Elias
    Korvenoja, Antti
    Larochelle, Hugo
    Ledig, Christian
    Lee, Jia-Hong
    Maes, Frederik
    Mahmood, Qaiser
    Maier-Hein, Klaus H.
    McKinley, Richard
    Muschelli, John
    Pal, Chris
    Pei, Linmin
    Rangarajan, Janaki Raman
    Reza, Syed M. S.
    Robben, David
    Rueckert, Daniel
    Salli, Eero
    Suetens, Paul
    Wang, Ching-Wei
    Wilms, Matthias
    Kirschke, Jan S.
    Kraemer, Ulrike M.
    Muente, Thomas F.
    Schramme, Peter
    Wiest, Roland
    Handels, Heinz
    Reyes, Mauricio
    MEDICAL IMAGE ANALYSIS, 2017, 35 : 250 - 269
  • [42] Deep learning for the fully automated segmentation of the inner ear on MRI
    Akshayaa Vaidyanathan
    Marly F. J. A. van der Lubbe
    Ralph T. H. Leijenaar
    Marc van Hoof
    Fadila Zerka
    Benjamin Miraglio
    Sergey Primakov
    Alida A. Postma
    Tjasse D. Bruintjes
    Monique A. L. Bilderbeek
    Hammer Sebastiaan
    Patrick F. M. Dammeijer
    Vincent van Rompaey
    Henry C. Woodruff
    Wim Vos
    Seán Walsh
    Raymond van de Berg
    Philippe Lambin
    Scientific Reports, 11
  • [43] Deep learning for the fully automated segmentation of the inner ear on MRI
    Vaidyanathan, Akshayaa
    van der Lubbe, Marly F. J. A.
    Leijenaar, Ralph T. H.
    van Hoof, Marc
    Zerka, Fadila
    Miraglio, Benjamin
    Primakov, Sergey
    Postma, Alida A.
    Bruintjes, Tjasse D.
    Bilderbeek, Monique A. L.
    Sebastiaan, Hammer
    Dammeijer, Patrick F. M.
    van Rompaey, Vincent
    Woodruff, Henry C.
    Vos, Wim
    Walsh, Sean
    van de Berg, Raymond
    Lambin, Philippe
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [44] Automated segmentation of pediatric brain tumors based on multi-parametric MRI and deep learning
    Madhogarhia, Rachel
    Kazerooni, Anahita Fathi
    Arif, Sherjeel
    Ware, Jeffrey B.
    Familiar, Ariana M.
    Vidal, Lorenna
    Bagheri, Sina
    Anderson, Hannah
    Haldar, Debanjan
    Yagoda, Sophie
    Graves, Erin
    Spadola, Michael
    Yan, Rachel
    Dahmane, Nadia
    Sako, Chiharu
    Vossough, Arastoo
    Storm, Phillip
    Resnick, Adam
    Davatzikos, Christos
    Nabavizadeh, Ali
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [45] Automated segmentation of the actively stained mouse brain using multi-spectral MR microscopy
    Sharief, Anjum A.
    Badea, Alexandra
    Dale, Anders M.
    Johnson, G. Allan
    NEUROIMAGE, 2008, 39 (01) : 136 - 145
  • [46] Analysis of multimodal fusion strategies in deep learning for ischemic stroke lesion segmentation on computed tomography perfusion data
    Raju C.S.P.
    Neelapu B.C.
    Laskar R.H.
    Muhammad G.
    Multimedia Tools and Applications, 2025, 84 (10) : 7493 - 7518
  • [47] Semantic segmentation guided detector for segmentation, classification, and lesion mapping of acute ischemic stroke in MRI images
    Wei, Yi-Chia
    Huang, Wen-Yi
    Jian, Chih-Yu
    Hsu, Chih-Chin Heather
    Hsu, Chih-Chung
    Lin, Ching-Po
    Cheng, Chi-Tung
    Chen, Yao-Liang
    Wei, Hung-Yu
    Chen, Kuan-Fu
    NEUROIMAGE-CLINICAL, 2022, 35
  • [48] Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN)
    Iqbal, Sajid
    Ghani, M. Usman
    Saba, Tanzila
    Rehman, Amjad
    MICROSCOPY RESEARCH AND TECHNIQUE, 2018, 81 (04) : 419 - 427
  • [49] Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation
    Zhang, Nan
    Ruan, Su
    Lebonvallet, Stephane
    Liao, Qingmin
    Zhu, Yuemin
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2011, 115 (02) : 256 - 269
  • [50] Deep Difference Representation Learning for Multi-spectral Imagery Change Detection
    Zhang, Hui
    Zhang, Puzhao
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND COMPUTER SCIENCE, 2016, 80 : 1008 - 1014