An innovative method for short-term forecasting of blockchain cryptocurrency price

被引:0
|
作者
Yang, Yunfei [1 ]
Wang, Xiaomei [1 ]
Xiong, Jiamei [1 ]
Wu, Lifeng [1 ]
Zhang, Yifang [1 ]
机构
[1] Hebei Univ Engn, Sch Management Engn & Business, Handan 056038, Peoples R China
关键词
Blockchain cryptocurrency; Price forecasting; Grey convolution model; Grey correlation analysis; Short-term prediction; GREY PREDICTION MODEL; TENSILE-STRENGTH; CONVOLUTION;
D O I
10.1016/j.apm.2024.115795
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cryptocurrency market sentiment is relatively unstable, which makes cryptocurrency price an attribute of high volatility. Accurate forecasting methods help to clarify the volatility trend of the cryptocurrency price, thereby reducing the investment risk of participants in the cryptocurrency market. Therefore, this research proposed a new method for short-term forecasting of the cryptocurrency price based on a small sample. This study took three typical blockchain cryptocurrencies (Bitcoin, Ethereum, Litecoin) as experimental objects, chose data intervals with different volatility trends in the U.S. stock indices between 2022 and 2023 as sample data, and used grey correlation analysis to select core affecting variables. Furthermore, this study built a grey multivariate convolution model with prioritized accumulating novel information for conducting prediction experiments on blockchain cryptocurrency price. The research findings demonstrate that the proposed model achieves high prediction accuracy in all experiments, and the model accuracy is superior to the comparison models. This study proposes a scientific prediction approach for blockchain cryptocurrency price, which can guide financial investors in developing and analyzing quantitative financial trading strategies to a certain extent. Meanwhile, this study provides a specific reference for relevant government departments to strengthen cryptocurrency regulation, prevent financial risks, and maintain financial stability.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Short-term electricity price forecasting based on singular spectrum analysis
    Yin H.
    Zeng Y.
    Meng A.
    Liu Z.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2019, 47 (01): : 115 - 122
  • [42] Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks
    de Marcos, Rodrigo A.
    Bunn, Derek W.
    Bello, Antonio
    Reneses, Javier
    ENERGIES, 2020, 13 (20)
  • [43] Short-term Electricity Price Forecasting in the Power Market Based on HHT
    Liao, Xiaohui
    Zhou, Bing
    Yang, Dongqiang
    2015 4TH INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENTAL PROTECTION (ICEEP 2015), 2015, : 505 - 509
  • [44] Short-Term Electricity Price Forecasting Based on Adaptive Hybrid Model
    Lin, Xianping
    Zhou, Zhenpeng
    Tian, Jiming
    Li, Shaofei
    Qin, Jianhua
    Niu, Zengxian
    Fan, Xueyuan
    Liu, Ziyi
    2024 6TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM, AEEES 2024, 2024, : 1340 - 1346
  • [45] Short-term electricity price forecasting based on Attention-GRU
    Xie Q.
    Dong L.
    She X.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2020, 48 (23): : 154 - 160
  • [46] A new method for short-term electricity load forecasting
    Wang, Jing-Min
    Wang, Li-Ping
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2008, 30 (3-4) : 331 - 344
  • [47] Isolated Areas Consumption Short-Term Forecasting Method
    Guerard, Guillaume
    Pousseur, Hugo
    Taleb, Ihab
    ENERGIES, 2021, 14 (23)
  • [48] Short-term load forecasting using Theta method
    Dudek, Grzegorz
    14TH INTERNATIONAL SCIENTIFIC CONFERENCE FORECASTING IN ELECTRIC POWER ENGINEERING (PE 2018), 2019, 84
  • [49] A Hybrid Method for Short-Term Wind Speed Forecasting
    Zhang, Jinliang
    Wei, YiMing
    Tan, Zhong-fu
    Wang, Ke
    Tian, Wei
    SUSTAINABILITY, 2017, 9 (04):
  • [50] A New Short-term Electric Load Forecasting Method
    Chen, X.
    Wang, J. H.
    Wang, J.
    Zhang, Y. Y.
    INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL AND ELECTRICAL ENGINEERING (AMEE 2015), 2015, : 663 - 670