Classification of Heart Failure Using Machine Learning: A Comparative Study

被引:0
|
作者
Chulde-Fernandez, Bryan [1 ]
Enriquez-Ortega, Denisse [1 ]
Guevara, Cesar [2 ]
Navas, Paulo [1 ]
Tirado-Espin, Andres [3 ]
Vizcaino-Imacana, Paulina [4 ]
Villalba-Meneses, Fernando [1 ]
Cadena-Morejon, Carolina [3 ]
Almeida-Galarraga, Diego [1 ]
Acosta-Vargas, Patricia [5 ]
机构
[1] Yachay Tech Univ, Sch Biol Sci & Engn, Hacienda San Jose S-N, San Miguel De Urcuqui 100119, Ecuador
[2] Cunef Univ, Quantitat Methods Dept, Madrid 28040, Spain
[3] Univ Yachay Tech, Sch Math & Computat Sci, San Miguel De Urcuqui 100119, Ecuador
[4] UIDE Int Univ Ecuador, Fac Tech Sci, Sch Comp Sci, Quito 170501, Ecuador
[5] Univ Las Amer, Intelligent & Interact Syst Lab, Quito 170125, Ecuador
来源
LIFE-BASEL | 2025年 / 15卷 / 03期
关键词
heart failure; machine learning; classification; feature extraction; diagnosis; CHALLENGES; MANAGEMENT; DISEASE;
D O I
10.3390/life15030496
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Several machine learning classification algorithms were evaluated using a dataset focused on heart failure. Results obtained from logistic regression, random forest, decision tree, K-nearest neighbors, and multilayer perceptron (MLP) were compared to obtain the best model. The random forest method obtained specificity = 0.93, AUC = 0.97, and Matthews correlation coefficient (MCC) = 0.83. The accuracy was high; therefore, it was considered the best model. On the other hand, K-nearest neighbors and MLP (multi-layer perceptron) showed lower accuracy rates. These results confirm the effectiveness of the random forest method in identifying heart failure cases. This study underlines that the number of features, feature selection and quality, model type, and hyperparameter fit are also critical in these studies, as well as the importance of using machine learning techniques.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Machine Learning Algorithms for Privacy Policy Classification: A Comparative Study
    Alshamsan, Abdullah R.
    Chaudhry, Shafique A.
    2022 2ND IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE (SEAI 2022), 2022, : 214 - 219
  • [42] Heart Disease Prediction Using Core Machine Learning Techniques-A Comparative Study
    Sarah, Sfurti
    Gourisaria, Mahendra Kumar
    Khare, Sandali
    Das, Himansu
    ADVANCES IN DATA AND INFORMATION SCIENCES, 2022, 318 : 247 - 260
  • [43] Performance Analysis of Machine Learning Classification Algorithms in the Case of Heart Failure Prediction
    De Silva, Chameera
    Kumarawadu, Priyantha
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 1160 - 1165
  • [44] Using EHRs and Machine Learning for Heart Failure Survival Analysis
    Panahiazar, Maryam
    Taslimitehrani, Vahid
    Pereira, Naveen
    Pathak, Jyotishman
    MEDINFO 2015: EHEALTH-ENABLED HEALTH, 2015, 216 : 40 - 44
  • [45] Using machine learning to characterize heart failure across the scales
    M. Peirlinck
    F. Sahli Costabal
    K. L. Sack
    J. S. Choy
    G. S. Kassab
    J. M. Guccione
    M. De Beule
    P. Segers
    E. Kuhl
    Biomechanics and Modeling in Mechanobiology, 2019, 18 : 1987 - 2001
  • [46] Using machine learning to characterize heart failure across the scales
    Peirlinck, M.
    Costabal, F. Sahli
    Sack, K. L.
    Choy, J. S.
    Kassab, G. S.
    Guccione, J. M.
    De Beule, M.
    Segers, P.
    Kuhl, E.
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2019, 18 (06) : 1987 - 2001
  • [47] Improving risk prediction in heart failure using machine learning
    Adler, Eric D.
    Voors, Adriaan A.
    Klein, Liviu
    Macheret, Fima
    Braun, Oscar O.
    Urey, Marcus A.
    Zhu, Wenhong
    Sama, Iziah
    Tadel, Matevz
    Campagnari, Claudio
    Greenberg, Barry
    Yagil, Avi
    EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (01) : 139 - 147
  • [48] Prediction of Heart Failure by using Machine Learning and Feature Selection
    Aslam, Muhammad Haseeb
    Hussain, Syed Fawad
    2022 17TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET'22), 2022, : 160 - 165
  • [49] Classification of fMRI Resting-State Maps using Machine Learning Techniques: a Comparative Study
    Gallos, Ioannis
    Siettos, Constantinos
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017), 2017, 1906
  • [50] Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes
    Austin, Peter C.
    Tu, Jack V.
    Ho, Jennifer E.
    Levy, Daniel
    Lee, Douglas S.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2013, 66 (04) : 398 - 407