Classification of Heart Failure Using Machine Learning: A Comparative Study

被引:0
|
作者
Chulde-Fernandez, Bryan [1 ]
Enriquez-Ortega, Denisse [1 ]
Guevara, Cesar [2 ]
Navas, Paulo [1 ]
Tirado-Espin, Andres [3 ]
Vizcaino-Imacana, Paulina [4 ]
Villalba-Meneses, Fernando [1 ]
Cadena-Morejon, Carolina [3 ]
Almeida-Galarraga, Diego [1 ]
Acosta-Vargas, Patricia [5 ]
机构
[1] Yachay Tech Univ, Sch Biol Sci & Engn, Hacienda San Jose S-N, San Miguel De Urcuqui 100119, Ecuador
[2] Cunef Univ, Quantitat Methods Dept, Madrid 28040, Spain
[3] Univ Yachay Tech, Sch Math & Computat Sci, San Miguel De Urcuqui 100119, Ecuador
[4] UIDE Int Univ Ecuador, Fac Tech Sci, Sch Comp Sci, Quito 170501, Ecuador
[5] Univ Las Amer, Intelligent & Interact Syst Lab, Quito 170125, Ecuador
来源
LIFE-BASEL | 2025年 / 15卷 / 03期
关键词
heart failure; machine learning; classification; feature extraction; diagnosis; CHALLENGES; MANAGEMENT; DISEASE;
D O I
10.3390/life15030496
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Several machine learning classification algorithms were evaluated using a dataset focused on heart failure. Results obtained from logistic regression, random forest, decision tree, K-nearest neighbors, and multilayer perceptron (MLP) were compared to obtain the best model. The random forest method obtained specificity = 0.93, AUC = 0.97, and Matthews correlation coefficient (MCC) = 0.83. The accuracy was high; therefore, it was considered the best model. On the other hand, K-nearest neighbors and MLP (multi-layer perceptron) showed lower accuracy rates. These results confirm the effectiveness of the random forest method in identifying heart failure cases. This study underlines that the number of features, feature selection and quality, model type, and hyperparameter fit are also critical in these studies, as well as the importance of using machine learning techniques.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Severity classification of software code smells using machine learning techniques: A comparative study
    Abdou, Ashraf
    Darwish, Nagy
    JOURNAL OF SOFTWARE-EVOLUTION AND PROCESS, 2024, 36 (01)
  • [32] A Comparative Study of Video-Based Analysis Using Machine Learning for Polyp Classification
    Krenzer, Adrian
    Puppe, Frank
    ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2023, 2023, 14236 : 144 - 156
  • [33] Automatic Cataract Classification based on Ultrasound Technique using Machine Learning: A comparative Study
    Caixinha, Miguel
    Velte, Elena
    Santos, Mario
    Perdigao, Fernando
    Amaro, Joao
    Gomes, Marco
    Santos, Jaime
    PROCEEDINGS OF THE 2015 ICU INTERNATIONAL CONGRESS ON ULTRASONICS, 2015, 70 : 1221 - 1224
  • [34] The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study
    Soliman, Amira
    Agvall, Bjorn
    Etminani, Kobra
    Hamed, Omar
    Lingman, Markus
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25
  • [35] Comparative Analysis of Network Fault Classification Using Machine Learning
    Kawasaki, Junichi
    Mouri, Genichi
    Suzuki, Yusuke
    NOMS 2020 - PROCEEDINGS OF THE 2020 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2020: MANAGEMENT IN THE AGE OF SOFTWARIZATION AND ARTIFICIAL INTELLIGENCE, 2020,
  • [36] Heart Disease Prognosis Using Machine Learning Classification Techniques
    Chowdhury, Mohammed Nowshad Ruhani
    Ahmed, Ezaz
    Siddik, Md Abu Dayan
    Zaman, Akhlak Uz
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [37] Heart disease classification using optimized Machine learning algorithms
    Kadhim M.A.
    Radhi A.M.
    Iraqi Journal for Computer Science and Mathematics, 2023, 4 (02): : 31 - 42
  • [38] Comparative Study of Machine Learning Algorithms for Glacier facies Classification
    Panwar, Ruby
    Kumar, Amit
    Singh, Gulab
    2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2024 - Proceedings, 2024, : 296 - 299
  • [39] A comparative study of machine learning algorithms for physiological signal classification
    Biagetti, Giorgio
    Crippa, Paolo
    Falaschetti, Laura
    Tanoni, Giulia
    Turchetti, Claudio
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES-2018), 2018, 126 : 1977 - 1984
  • [40] Comparative study of various machine learning methods on ASD classification
    Rimal, Ramchandra
    Brannon, Mitchell
    Wang, Yingxin
    Yang, Xin
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2023,