An Edge-Based Smoothed Finite Element Method for Magnetic Field Analysis in Permanent Magnet Motors

被引:0
|
作者
Li, Xudong [1 ]
Yi, Feng [1 ]
Chen, Jinhua [1 ]
Ma, Haoran [2 ,3 ]
Chen, Zhenmao [4 ]
Zhang, Chi [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Key Lab Robot & Intelligent Mfg Equipment, Ningbo 315201, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, CAS Key Lab Magnet Mat & Devices, Ningbo 315201, Peoples R China
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Key Lab Magnet Mat & Applicat Techno, Ningbo 315201, Peoples R China
[4] Xi An Jiao Tong Univ, Shaanxi Engn Res Ctr NDT & Struct Integr Evaluat, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element analysis; Magnetic domains; Magnetostatics; Accuracy; Vectors; Smoothing methods; Mathematical models; Edge-based smoothed finite element method (ES-FEM); Halbach array; magnetic field simulation; permanent magnet motors (PMMs);
D O I
10.1109/TMAG.2024.3416452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents an edge-based smoothed finite element method (ES-FEM) aiming to enhance the accuracy of magnetic field simulations in permanent magnet motors (PMMs). ES-FEM constructs cross-mesh smooth domains while retaining the traditional finite element mesh. The global stiffness matrix is assembled based on the gradient fields associated with these smooth domains, providing an appropriate stiffness for obtaining more precise results. Utilizing the ES-FEM, this article formulates a smoothed Galerkin weak form for the magnetic field of permanent magnets. Numerical examples, employing a Halbach array, have been carried out. The results indicate that the ES-FEM demonstrates superior accuracy and cost-effectiveness compared to the traditional finite element method (FEM) with low-order triangular and quadrilateral elements. Moreover, the ES-FEM exhibits better tolerance to mesh distortion, thereby improving its utility in simulations of motor magnetic fields.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Magnetic field analysis of permanent magnet motors
    Rabinovici, R
    IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (01) : 265 - 269
  • [32] Electromagnetic Field Analysis in Permanent Magnet Retarder Based on Finite Element Method
    Ye, L. Z.
    Li, D. S.
    Jiao, B. F.
    Wang, Y. Z.
    PIERS 2010 CAMBRIDGE: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2010, : 28 - 32
  • [33] An Accurate Iron Loss Evaluation Method Based on Finite Element Analysis for Permanent Magnet Motors
    Sano, Hiroyuki
    Narita, Katsuyuki
    Asanuma, Tatsuya
    Yamada, Takashi
    2016 XXII INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES (ICEM), 2016, : 1284 - 1289
  • [34] Coupling edge-based smoothed finite element method with smoothed particle hydrodynamics for fluid structure interaction problems
    Long, Ting
    Huang, Can
    Hu, Dean
    Liu, Moubin
    OCEAN ENGINEERING, 2021, 225
  • [35] On the edge-based smoothed finite element approximation of viscoelastic fluid flows
    He, Tao
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (05) : 423 - 442
  • [36] Motor magnetic field analysis using the edge-based smooth finite element method (ES-FEM)
    Li, R. Q.
    Peng, M. D.
    He, Z. C.
    Chang, G. B.
    Zhou, E. L.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 163 : 320 - 332
  • [37] Robustness of the multigrid method for edge-based finite element analysis
    Watanabe, K., 1600, John Wiley and Sons Inc. (148):
  • [38] Robustness of the multigrid method for edge-based finite element analysis
    Watanabe, K
    Igarashi, H
    Honma, T
    ELECTRICAL ENGINEERING IN JAPAN, 2004, 148 (01) : 75 - 81
  • [39] A generalized probabilistic edge-based smoothed finite element method for elastostatic analysis of Reissner-Mindlin plates
    Wu, F.
    Zeng, W.
    Yao, L. Y.
    Liu, G. R.
    APPLIED MATHEMATICAL MODELLING, 2018, 53 : 333 - 352
  • [40] Coupled analysis of 3D structural-acoustic problems using the edge-based smoothed finite element method/finite element method
    He, Z. C.
    Liu, G. R.
    Zhong, Z. H.
    Zhang, G. Y.
    Cheng, A. G.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2010, 46 (12) : 1114 - 1121