共 50 条
Investigating the Balance between Power Conversion Efficiency and Average Visible Transmittance for Semitransparent Perovskite Solar Cells
被引:1
|作者:
Noman, Muhammad
[1
]
Ullah, Azmat
[1
]
Jan, Shayan Tariq
[2
]
Khan, Adnan Daud
[1
]
机构:
[1] Univ Engn & Technol, US Pakistan Ctr Adv Studies Energy, Peshawar 25000, Pakistan
[2] Univ Engn & Technol, Dept Elect Engn, Mardan 23200, Pakistan
关键词:
average visible transmittances;
building integrated photovoltaics;
perovskite solar cells;
power conversion efficiencies;
semitransparencies;
LAYER THICKNESS;
WORK FUNCTION;
KESTERITE;
PERFORMANCE;
ABSORPTION;
D O I:
10.1002/ente.202401452
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
The raising demand for sustainable energy in architecture has increased interest in building-integrated photovoltaics (BIPV), with semi-transparent perovskite cells (PSCs) emerging as an option. This research focuses on the critical balance between efficiency (PCE) and average visible transmittance (AVT) necessary for the development of semi-transparent PSCs. Through comprehensive investigation, two perovskites, MAPbI3 and MAPbBr3, are examined for their respective advantages of high PCE and transparency. A series of simulations are conducted to analyze the impact of perovskite thickness on the properties of the PSC. The study analyzes the compatibility of different charge transport layers with perovskites to enhance carrier flow and reduce recombination at heterojunction. Furthermore, the effect of the work-function of transparent conductive oxide electrode on the performance of the PSCs is investigated. The findings show that an optimal range of perovskite thickness that achieves PCE of over 10% while maintaining an AVT above 20% offers a viable solution for BIPV. For applications where visual transparency is crucial, the SnO2/MAPbBr3/CuSCN presents a compelling choice with AVT of 29.2% along with PCE of 10.72% at 440 nm thickness. In contrast, for applications requiring higher PCE, the SnO2/MAPbI3/CuSCN stands out with the PCE of 19.22% and AVT of 20% at 250 nm thickness.
引用
收藏
页数:10
相关论文