Benchmarking the integration of hexagonal boron nitride crystals and thin films into graphene-based van der Waals heterostructures

被引:0
|
作者
Ouaj, Taoufiq [1 ,2 ]
Arnold, Christophe [3 ]
Azpeitia, Jon [4 ]
Baltic, Sunaja [1 ,2 ]
Barjon, Julien [3 ]
Cascales, Jose [4 ]
Cun, Huanyao [5 ]
Esteban, David [4 ]
Garcia-Hernandez, Mar [4 ]
Garnier, Vincent [6 ]
Gautam, Subodh K. [3 ]
Greber, Thomas [7 ]
Said Hassani, Said [3 ]
Hemmi, Adrian [7 ]
Jimenez, Ignacio [4 ]
Journet, Catherine [8 ]
Koegerler, Paul [9 ,10 ]
Loiseau, Annick [11 ]
Maestre, Camille [8 ]
Metzelaars, Marvin [1 ,2 ,9 ]
Schmidt, Philipp [1 ,2 ]
Stampfer, Christoph [1 ,2 ,12 ]
Stenger, Ingrid [3 ]
Steyer, Philippe [6 ]
Taniguchi, Takashi [13 ]
Toury, Berangere [8 ]
Watanabe, Kenji [14 ]
Beschoten, Bernd [1 ,2 ]
机构
[1] Rhein Westfal TH Aachen, Inst Phys 2, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, JARA FIT, D-52074 Aachen, Germany
[3] Univ Paris Saclay, Saclay, France
[4] CSIC, Inst Ciencia Mat Madrid ICMM, Sor Juana Ines de la Cruz 3, Madrid 28049, Spain
[5] Univ Zurich, Phys Inst, CH-8057 Zurich, Switzerland
[6] Univ Claude Bernard Lyon 1, MATEIS,UMR5510, Villeurbanne, France
[7] Univ Zurich, Phys Inst, Zurich, Switzerland
[8] Univ Claude Bernard Lyon 1, CNRS, LMI, UMR 5615, F-69100 Villeurbanne, France
[9] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany
[10] Forschungszentrum Julich, Peter Grunberg Inst PGI 6, D-52425 Julich, Germany
[11] Univ Paris Saclay, ONERA, CNRS, Lab Etud Microstruct, F-92322 Chatillon, France
[12] Forschungszentrum Julich, Peter Grunberg Inst PGI 9, D-52425 Julich, Germany
[13] Natl Inst Mat Sci, 1 1 Namiki, Ibaraki, Japan
[14] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, 1 1 Namiki, Tsukuba 3050044, Japan
来源
2D MATERIALS | 2025年 / 12卷 / 01期
基金
欧盟地平线“2020”; 欧洲研究理事会; 瑞士国家科学基金会;
关键词
hBN; graphene; crystal growth; thin film growth; charge carrier mobility; SINGLE-CRYSTALS; ATMOSPHERIC-PRESSURE; RAMAN-SPECTROSCOPY; GROWTH; SYSTEM; LAYER; SUBSTRATE; DEFECTS;
D O I
10.1088/2053-1583/ad96c9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a benchmarking protocol that combines the characterization of boron nitride (BN) crystals and films with the evaluation of the electronic properties of graphene on these substrates. Our study includes hBN crystals grown under different conditions (atmospheric pressure high temperature, high pressure high temperature, pressure controlled furnace) and scalable BN films deposited by either chemical or physical vapor deposition (PVD). We explore the complete process from boron nitride growth, over its optical characterization by time-resolved cathodoluminescence (TRCL), to the optical and electronic characterization of graphene by Raman spectroscopy after encapsulation and Hall bar processing. Within our benchmarking protocol we achieve a homogeneous electronic performance within each Hall bar device through a fast and reproducible processing routine. We find that a free exciton lifetime of 1ns measured on as-grown hBN crystals by TRCL is sufficient to achieve high graphene room temperature charge carrier mobilities of 80000cm2(Vs)-1 at a carrier density of |n|=1x1012cm-2, while respective exciton lifetimes around 100ps yield mobilities up to 30000cm2(Vs)-1. For scalable PVD-grown BN films, we measure carrier mobilities exceeding 10000cm2(Vs)-1 which correlates with a graphene Raman 2D peak linewidth of 22cm-1. Our work highlights the importance of the Raman 2D linewidth of graphene as a critical metric that effectively assesses the interface quality (i.e. surface roughness) to the BN substrate, which directly affects the charge carrier mobility of graphene. Graphene 2D linewidth analysis is suitable for all BN substrates and is particularly advantageous when TRCL or BN Raman spectroscopy cannot be applied to specific BN materials such as amorphous or thin films. This underlines the superior role of spatially-resolved spectroscopy in the evaluation of BN crystals and films for the use of high-mobility graphene devices.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Graphene-based van der Waals heterostructures for emission and detection of terahertz radiation
    Otsuji, Taiichi
    Dubinov, Alexander
    Aleshkin, VladimirYa
    Svintsov, Dmitry
    Ryzhii, Maxim
    Tombet, Stephane Boubanga
    Yadav, Deepika
    Satou, Akira
    Mitin, Vladimir
    Shur, Michael S.
    Ryzhii, Victor
    TERAHERTZ PHYSICS, DEVICES, AND SYSTEMS X: ADVANCED APPLICATIONS IN INDUSTRY AND DEFENSE, 2016, 9856
  • [32] Pt Nanoclusters Sandwiched between Hexagonal Boron Nitride and Nanographene as van der Waals Heterostructures for Optoelectronics
    Duell, Fabian
    Freiberger, Eva Marie
    Bachmann, Philipp
    Steinhauer, Johann
    Papp, Christian
    ACS APPLIED NANO MATERIALS, 2019, 2 (11) : 7019 - 7024
  • [33] van der Waals heterostructures of germanene, stanene, and silicene with hexagonal boron nitride and their topological domain walls
    Wang, Maoyuan
    Liu, Liping
    Liu, Cheng-Cheng
    Yao, Yugui
    PHYSICAL REVIEW B, 2016, 93 (15)
  • [34] Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride
    Dai, S.
    Fei, Z.
    Ma, Q.
    Rodin, A. S.
    Wagner, M.
    McLeod, A. S.
    Liu, M. K.
    Gannett, W.
    Regan, W.
    Watanabe, K.
    Taniguchi, T.
    Thiemens, M.
    Dominguez, G.
    Castro Neto, A. H.
    Zettl, A.
    Keilmann, F.
    Jarillo-Herrero, P.
    Fogler, M. M.
    Basov, D. N.
    SCIENCE, 2014, 343 (6175) : 1125 - 1129
  • [35] Isotope engineering of van der Waals interactions in hexagonal boron nitride
    T. Q. P. Vuong
    S. Liu
    A. Van der Lee
    R. Cuscó
    L. Artús
    T. Michel
    P. Valvin
    J. H. Edgar
    G. Cassabois
    B. Gil
    Nature Materials, 2018, 17 (2) : 152 - 158
  • [36] Isotope engineering of van der Waals interactions in hexagonal boron nitride
    Vuong, T. Q. P.
    Liu, S.
    Van der Lee, A.
    Cusco, R.
    Artus, L.
    Michel, T.
    Valvin, P.
    Edgar, J. H.
    Cassabois, G.
    Gil, B.
    NATURE MATERIALS, 2018, 17 (02) : 152 - +
  • [37] Van der Waals quantum dots on layered hexagonal boron nitride
    Wu, Yuanpeng
    Xiao, Yixin
    Zhao, Ying
    Shen, Yifan
    Sun, Kai
    Wang, Boyu
    Wang, Ping
    Wang, Ding
    Zhou, Peng
    Wang, Danhao
    Liu, Jiangnan
    Hu, Mingtao
    Norris, Theodore B.
    Song, Jun
    Mi, Zetian
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2025, 122 (09)
  • [38] Ultra-thin van der Waals magnetic tunnel junction based on monoatomic boron vacancy of hexagonal boron nitride
    Harfah, Halimah
    Wicaksono, Yusuf
    Sunnardianto, Gagus Ketut
    Majidi, Muhammad Aziz
    Kusakabe, Koichi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (12) : 9733 - 9740
  • [39] Graphene-Based Mixed-Dimensional van der Waals Heterostructures for Advanced Optoelectronics
    Zhang, Zheng
    Lin, Pei
    Liao, Qingliang
    Kang, Zhuo
    Si, Haonan
    Zhang, Yue
    ADVANCED MATERIALS, 2019, 31 (37)
  • [40] Manipulating the Self-Trapped Excitons in the Lead Iodide/Hexagonal Boron Nitride van der Waals Heterostructures
    Li, Delong
    Han, Na
    Chen, Hao
    Zhu, Jiaqi
    Gong, Youning
    Bao, Qiaoliang
    Wang, Weiliang
    Zhang, Yupeng
    Wang, Guo Ping
    LASER & PHOTONICS REVIEWS, 2023, 17 (08)