Benchmarking the integration of hexagonal boron nitride crystals and thin films into graphene-based van der Waals heterostructures

被引:0
|
作者
Ouaj, Taoufiq [1 ,2 ]
Arnold, Christophe [3 ]
Azpeitia, Jon [4 ]
Baltic, Sunaja [1 ,2 ]
Barjon, Julien [3 ]
Cascales, Jose [4 ]
Cun, Huanyao [5 ]
Esteban, David [4 ]
Garcia-Hernandez, Mar [4 ]
Garnier, Vincent [6 ]
Gautam, Subodh K. [3 ]
Greber, Thomas [7 ]
Said Hassani, Said [3 ]
Hemmi, Adrian [7 ]
Jimenez, Ignacio [4 ]
Journet, Catherine [8 ]
Koegerler, Paul [9 ,10 ]
Loiseau, Annick [11 ]
Maestre, Camille [8 ]
Metzelaars, Marvin [1 ,2 ,9 ]
Schmidt, Philipp [1 ,2 ]
Stampfer, Christoph [1 ,2 ,12 ]
Stenger, Ingrid [3 ]
Steyer, Philippe [6 ]
Taniguchi, Takashi [13 ]
Toury, Berangere [8 ]
Watanabe, Kenji [14 ]
Beschoten, Bernd [1 ,2 ]
机构
[1] Rhein Westfal TH Aachen, Inst Phys 2, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, JARA FIT, D-52074 Aachen, Germany
[3] Univ Paris Saclay, Saclay, France
[4] CSIC, Inst Ciencia Mat Madrid ICMM, Sor Juana Ines de la Cruz 3, Madrid 28049, Spain
[5] Univ Zurich, Phys Inst, CH-8057 Zurich, Switzerland
[6] Univ Claude Bernard Lyon 1, MATEIS,UMR5510, Villeurbanne, France
[7] Univ Zurich, Phys Inst, Zurich, Switzerland
[8] Univ Claude Bernard Lyon 1, CNRS, LMI, UMR 5615, F-69100 Villeurbanne, France
[9] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany
[10] Forschungszentrum Julich, Peter Grunberg Inst PGI 6, D-52425 Julich, Germany
[11] Univ Paris Saclay, ONERA, CNRS, Lab Etud Microstruct, F-92322 Chatillon, France
[12] Forschungszentrum Julich, Peter Grunberg Inst PGI 9, D-52425 Julich, Germany
[13] Natl Inst Mat Sci, 1 1 Namiki, Ibaraki, Japan
[14] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, 1 1 Namiki, Tsukuba 3050044, Japan
来源
2D MATERIALS | 2025年 / 12卷 / 01期
基金
欧盟地平线“2020”; 欧洲研究理事会; 瑞士国家科学基金会;
关键词
hBN; graphene; crystal growth; thin film growth; charge carrier mobility; SINGLE-CRYSTALS; ATMOSPHERIC-PRESSURE; RAMAN-SPECTROSCOPY; GROWTH; SYSTEM; LAYER; SUBSTRATE; DEFECTS;
D O I
10.1088/2053-1583/ad96c9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a benchmarking protocol that combines the characterization of boron nitride (BN) crystals and films with the evaluation of the electronic properties of graphene on these substrates. Our study includes hBN crystals grown under different conditions (atmospheric pressure high temperature, high pressure high temperature, pressure controlled furnace) and scalable BN films deposited by either chemical or physical vapor deposition (PVD). We explore the complete process from boron nitride growth, over its optical characterization by time-resolved cathodoluminescence (TRCL), to the optical and electronic characterization of graphene by Raman spectroscopy after encapsulation and Hall bar processing. Within our benchmarking protocol we achieve a homogeneous electronic performance within each Hall bar device through a fast and reproducible processing routine. We find that a free exciton lifetime of 1ns measured on as-grown hBN crystals by TRCL is sufficient to achieve high graphene room temperature charge carrier mobilities of 80000cm2(Vs)-1 at a carrier density of |n|=1x1012cm-2, while respective exciton lifetimes around 100ps yield mobilities up to 30000cm2(Vs)-1. For scalable PVD-grown BN films, we measure carrier mobilities exceeding 10000cm2(Vs)-1 which correlates with a graphene Raman 2D peak linewidth of 22cm-1. Our work highlights the importance of the Raman 2D linewidth of graphene as a critical metric that effectively assesses the interface quality (i.e. surface roughness) to the BN substrate, which directly affects the charge carrier mobility of graphene. Graphene 2D linewidth analysis is suitable for all BN substrates and is particularly advantageous when TRCL or BN Raman spectroscopy cannot be applied to specific BN materials such as amorphous or thin films. This underlines the superior role of spatially-resolved spectroscopy in the evaluation of BN crystals and films for the use of high-mobility graphene devices.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Modulating Charge Separation with Hexagonal Boron Nitride Mediation in Vertical Van der Waals Heterostructures
    Inbaraj, Christy Roshini Paul
    Mathew, Roshan Jesus
    Ulaganathan, Rajesh Kumar
    Sankar, Raman
    Kataria, Monika
    Lin, Hsia Yu
    Cheng, Hao-Yu
    Lin, Kung-Hsuan
    Lin, Hung-, I
    Liao, Yu-Ming
    Chou, Fang Cheng
    Chen, Yit-Tsong
    Lee, Chih-Hao
    Chen, Yang-Fang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (23) : 26213 - 26221
  • [22] Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics
    Kim, Ki Kang
    Lee, Hyun Seok
    Lee, Young Hee
    CHEMICAL SOCIETY REVIEWS, 2018, 47 (16) : 6342 - 6369
  • [23] Classical and quantum phases in hexagonal boron nitride-combined van der Waals heterostructures
    Zheng, Shoujun
    Zhao, Mali
    Sun, Linfeng
    Yang, Heejun
    INFOMAT, 2021, 3 (03) : 252 - 270
  • [24] Moire superlattice effects in graphene/boron-nitride van der Waals heterostructures
    Wallbank, John R.
    Mucha-Kruczynski, Marcin
    Chen, Xi
    Fal'ko, Vladimir I.
    ANNALEN DER PHYSIK, 2015, 527 (5-6) : 359 - 376
  • [25] Bubble-Free Transfer Technique for High-Quality Graphene/Hexagonal Boron Nitride van der Waals Heterostructures
    Iwasaki, Takuya
    Endo, Kosuke
    Watanabe, Eiichiro
    Tsuya, Daiju
    Morita, Yoshifumi
    Nakaharai, Shu
    Noguchi, Yutaka
    Wakayama, Yutaka
    Watanabe, Kenji
    Taniguchi, Takashi
    Moriyama, Satoshi
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) : 8533 - 8538
  • [26] Electrical spin injection, transport, and detection in graphene-hexagonal boron nitride van der Waals heterostructures: progress and perspectives
    Gurram, M.
    Omar, S.
    van Wees, B. J.
    2D MATERIALS, 2018, 5 (03):
  • [27] Characterization of the mechanical properties of van der Waals heterostructures of stanene adsorbed on graphene, hexagonal boron-nitride and silicon carbide
    Rahman, Md Habibur
    Chowdhury, Emdadul Haque
    Redwan, Didarul Ahasan
    Mitra, Shailee
    Hong, Sungwook
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (09) : 5244 - 5253
  • [28] Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures
    Lin, Yu-Chuan
    Li, Jun
    de la Barrera, Sergio C.
    Eichfeld, Sarah M.
    Nie, Yifan
    Addou, Rafik
    Mende, Patrick C.
    Wallace, Robert M.
    Cho, Kyeongjae
    Feenstra, Randall M.
    Robinson, Joshua A.
    NANOSCALE, 2016, 8 (16) : 8947 - 8954
  • [29] Rapid and catalyst-free van der Waals epitaxy of graphene on hexagonal boron nitride
    Mishra, Neeraj
    Miseikis, Vaidotas
    Convertino, Domenica
    Gemmi, Mauro
    Piazza, Vincenzo
    Coletti, Camilla
    CARBON, 2016, 96 : 497 - 502
  • [30] Effects of isotopic substitution on the phonons of van der Waals crystals: the case of hexagonal boron nitride
    Cusco, R.
    Edgar, J.
    Liu, S.
    Cassabois, G.
    Gil, B.
    Artus, L.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (30)