New perspectives on structural health monitoring using unsupervised quantum machine learning

被引:0
|
作者
Alves, Victor Higino Meneguitte [1 ]
Gomes, Raphael Fortes Infante [2 ]
Cury, Alexandre [1 ]
机构
[1] Univ Juiz De Fora, Fac Engn, Grad Program Civil Engn, Juiz De Fora, MG, Brazil
[2] Fed Univ Latin Amer Integrat, Foz Do Iguacu, Parana, Brazil
关键词
Structural Health Monitoring; Quantum Machine Learning; Damage detection; Quantum Computing; Unsupervised learning; OPTIMIZATION;
D O I
10.1016/j.ymssp.2025.112489
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study presents a novel approach using unsupervised Quantum Machine Learning (QML) for Structural Health Monitoring (SHM). The proposed methodology involves extracting features from raw acceleration signals and encoding them into quantum states for a subsequent analysis in a quantum classifier. By training the model with known intact scenarios, an anomaly score function is evaluated to identify deviations from normal behavior aiming to detect potential structural anomalies. The framework is validated through experimental applications on a twostory laboratory frame and on a real-scale railway bridge, demonstrating encouraging results in anomaly detection, localization, and quantification. Through experimentation and numerical analyses, this study advances on the edge of SHM research, laying the foundation for future exploration at the intersection of Quantum Computing and Civil Engineering.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Structural health monitoring system using support vector machine
    Hagiwara, H
    Mita, A
    ADVANCES IN BUILDING TECHNOLOGY, VOLS I AND II, PROCEEDINGS, 2002, : 481 - 488
  • [42] Classification of Users of a Health Service Provider Using Unsupervised Machine Learning Methods
    Arango-Abella M.D.
    Figueroa-García J.C.
    SN Computer Science, 5 (5)
  • [43] Quantum photonics based health monitoring system using music data analysis by machine learning models
    Zhu, Jing
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (04)
  • [44] Monitoring the gas metal arc additive manufacturing process using unsupervised machine learning
    Mattera, Giulio
    Polden, Joseph
    Norrish, John
    WELDING IN THE WORLD, 2024, 68 (11) : 2853 - 2867
  • [45] INSIGHT INTO ACTIVE HEALTH MONITORING METHODS USING MACHINE LEARNING
    Reynolds, Whitney
    Doyle, Derek
    Arritt, Brandon
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS (SMASIS 2011), VOL 2, 2011, : 535 - 543
  • [46] Timber Health Monitoring Using Piezoelectric Sensor and Machine Learning
    Oiwa, Ryo
    Ito, Takumi
    Kawahara, Takayuki
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA), 2017, : 123 - 128
  • [47] Health Monitoring of Automotive Suspension System using Machine Learning
    Abdelfattah, Ahmed
    Ibrahim, Hesham
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS (VEHITS), 2021, : 325 - 332
  • [48] Machine Tool Component Health Identification with Unsupervised Learning
    Gittler, Thomas
    Scholze, Stephan
    Rupenyan, Alisa
    Wegener, Konrad
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2020, 4 (03):
  • [49] Distributed unsupervised learning using the multisoft machine
    Patané, G
    Russo, M
    INFORMATION SCIENCES, 2002, 143 (1-4) : 181 - 196
  • [50] Clustering superconductors using unsupervised machine learning
    Roter, B.
    Ninkovic, N.
    Dordevic, S. V.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2022, 598