Distributed unsupervised learning using the multisoft machine

被引:2
|
作者
Patané, G
Russo, M
机构
[1] Univ Messina, Dept Phys, I-98166 Messina, Italy
[2] Ist Nazl Fis Nucl, Sect Catania, I-95129 Catania, Italy
[3] Univ Catania, Fac Engn, Inst Comp Sci & Telecommun, I-95125 Catania, Italy
关键词
unsupervised learning; vector quantization; clustering; parallel; multicomputers;
D O I
10.1016/S0020-0255(02)00198-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised learning using K-means techniques is successfully employed in several application fields. When the training set and the number of reference vectors increases, the computational effort can become prohibitive for mono-processor Computers. This paper illustrates the parallelization of two clustering techniques using the MULTISOFT machine, a commodity supercomputer, built at the University of Messina. The particular management policy of the MULTISOFT machine and the implementation techniques have shown very interesting results: the speedup increases together with the complexity of the problem to be solved. (C) 2002 Published by Elsevier Science Inc.
引用
收藏
页码:181 / 196
页数:16
相关论文
共 50 条
  • [1] Distributed fuzzy learning using the MULTISOFT machine
    Russo, M
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (03): : 475 - 484
  • [2] Clustering superconductors using unsupervised machine learning
    Roter, B.
    Ninkovic, N.
    Dordevic, S. V.
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2022, 598
  • [3] Bot detection using unsupervised machine learning
    Wei Wu
    Jaime Alvarez
    Chengcheng Liu
    Hung-Min Sun
    [J]. Microsystem Technologies, 2018, 24 : 209 - 217
  • [4] Prospectivity analysis using unsupervised machine learning
    Aranha, Malcolm
    Porwal, Alok
    [J]. 16TH SGA BIENNIAL MEETING, 2022, VOL 1, 2022, : 9 - 12
  • [5] Estimating extinction using unsupervised machine learning
    Meingast, Stefan
    Lombardi, Marco
    Alves, Joao
    [J]. ASTRONOMY & ASTROPHYSICS, 2017, 601
  • [6] Bot detection using unsupervised machine learning
    Wu, Wei
    Alvarez, Jaime
    Liu, Chengcheng
    Sun, Hung-Min
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2018, 24 (01): : 209 - 217
  • [7] Unsupervised Feature Learning Classification Using An Extreme Learning Machine
    Lam, Dao
    Wunsch, Donald
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [8] Representative Profiling of Prosumers with Local Distributed Energy Resources and Electric Vehicles Using Unsupervised Machine Learning
    Mabuggwe, Daniel J.
    Morsi, Walid G.
    [J]. 2020 IEEE ELECTRIC POWER AND ENERGY CONFERENCE (EPEC), 2020,
  • [9] IoT Device Identification Using Unsupervised Machine Learning
    Koball, Carson
    Rimal, Bhaskar P.
    Wang, Yong
    Salmen, Tyler
    Ford, Connor
    [J]. INFORMATION, 2023, 14 (06)
  • [10] Keratoconus severity identification using unsupervised machine learning
    Yousefi, Siamak
    Yousefi, Ebrahim
    Takahashi, Hidenori
    Hayashi, Takahiko
    Tampo, Hironobu
    Inoda, Satoru
    Arai, Yusuke
    Asbell, Penny
    [J]. PLOS ONE, 2018, 13 (11):