Evaluation of the accuracy of automated segmentation based on deep learning for prostate cancer patients

被引:0
|
作者
Miura, Hideharu [1 ,2 ]
Ishihara, Soichiro [1 ]
Kenjo, Masahiro [1 ]
Nakao, Minoru [1 ,2 ]
Ozawa, Shuichi [1 ,2 ]
Kagemoto, Masayuki [1 ]
机构
[1] Hiroshima High Precis Radiotherapy Canc Ctr, 3-2-2 Futabanosato,Higashiku Ku, Hiroshima 7320057, Japan
[2] Hiroshima Univ, Grad Sch Biomed & Hlth Sci, Dept Radiat Oncol, 1-2-3 Kasumi,Minami Ku, Hiroshima 7348551, Japan
关键词
Automated segmentation; Deep learning; Prostate; INTEROBSERVER VARIABILITY; RADIATION-THERAPY; AUTO-SEGMENTATION; RISK;
D O I
10.1016/j.meddos.2024.09.002
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: This study evaluated the accuracy of a commercial deep learning (DL)-based algorithm for segmenting the prostate, seminal vesicles (SV), and organs at risk (OAR) in patients with prostate cancer. Methods: Ten patients with prostate cancer were selected to compare automated and manual segmentation. The prostate, SV, and OAR, including the bladder, rectum, left and right femoral heads, and penile bulb, were delineated and reviewed according to our institutional protocols by radiation oncologists. The CT and MR images were fused to the prostate, and the prostate and penile bulb were manually delineated on the CT and MR images. The remaining organs were delineated on the CT images without the MR images. MVision AI Contour + was used to perform DL-based automated segmentation. The dice similarity coefficient (DSC) and 95% Hausdorff distance (HD95%) were evaluated for comparison with manual delineations. Results: The mean DSC values for the prostate, SV, bladder, rectum, both femoral heads, and penile bulb were 0.86, 0.80, 0.96, 0.92, 0.97, and 0.64, respectively. The HD95% for all the organs was less than 3 mm. Conclusions: The commercial DL-based auto segmentation solution provided high-quality contours in patients with prostate cancer. (c) 2024 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:91 / 95
页数:5
相关论文
共 50 条
  • [31] Automated Quality Assurance of OAR Contouring for Lung Cancer Based on Segmentation With Deep Active Learning
    Men, Kuo
    Geng, Huaizhi
    Biswas, Tithi
    Liao, Zhongxing
    Xiao, Ying
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [32] Deep learning-based segmentation considering observer variation - evaluation in prostate MRI for BT
    Dushatskiy, A.
    Bosman, P. A. N.
    Hinnen, K. A.
    Wiersma, J.
    Westerveld, H.
    Pieters, B.
    Alderliesten, T.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S406 - S407
  • [33] Automated segmentation of endometrial cancer on MR images using deep learning
    Erlend Hodneland
    Julie A. Dybvik
    Kari S. Wagner-Larsen
    Veronika Šoltészová
    Antonella Z. Munthe-Kaas
    Kristine E. Fasmer
    Camilla Krakstad
    Arvid Lundervold
    Alexander S. Lundervold
    Øyvind Salvesen
    Bradley J. Erickson
    Ingfrid Haldorsen
    Scientific Reports, 11
  • [34] Automated segmentation of endometrial cancer on MR images using deep learning
    Hodneland, Erlend
    Dybvik, Julie A.
    Wagner-Larsen, Kari S.
    Solteszova, Veronika
    Munthe-Kaas, Antonella Z.
    Fasmer, Kristine E.
    Krakstad, Camilla
    Lundervold, Arvid
    Lundervold, Alexander S.
    Salvesen, Oyvind
    Erickson, Bradley J.
    Haldorsen, Ingfrid
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [35] Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients
    van den Berg, Ingeborg
    Savenije, Mark H. F.
    Teunissen, Frederik R.
    van de Pol, Sandrine M. G.
    Rasing, Marnix J. A.
    van Melick, Harm H. E.
    Brink, Wyger M.
    de Boer, Johannes C. J.
    van den Berg, Cornelis A. T.
    van Zyp, Jochem R. N. van der Voort
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2023, 26
  • [36] Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer
    Chung, Seung Yeun
    Chang, Jee Suk
    Kim, Yong Bae
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [37] Evaluation of a Deep Learning Algorithm for Automated Spleen Segmentation in Patients with Conditions Directly or Indirectly Affecting the Spleen
    Meddeb, Aymen
    Kossen, Tabea
    Bressem, Keno K.
    Hamm, Bernd
    Nagel, Sebastian N.
    TOMOGRAPHY, 2021, 7 (04) : 950 - 960
  • [38] Evaluation Of Deep-Learning Auto-Segmentation Methods In Cervix Cancer Patients
    Lancellotta, V.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S265 - S266
  • [39] URO - Fully Automated Deep Learning Model for the Detection of Prostate Cancer
    Krome, Susanne
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2025, 197 (04): : 367 - 367
  • [40] High-accuracy prostate cancer pathology using deep learning
    Tolkach, Yuri
    Dohmgoergen, Tilmann
    Toma, Marieta
    Kristiansen, Glen
    NATURE MACHINE INTELLIGENCE, 2020, 2 (07) : 411 - +