共 50 条
Piezoelectric field accelerating charge transfer in Z-scheme heterojunction 2D-KNbO3/1D-CdS for efficient piezo-photocatalytic H2 evolution and TCH degradation
被引:0
|作者:
Ma, Wenmei
[1
]
Du, Shiwen
[2
]
Suo, Shilong
[1
]
Li, Yuanyuan
[1
]
Guo, Jiacheng
[1
]
Wang, Yumin
[1
]
Han, Ziwu
[1
]
Chen, Chang
[1
]
Fang, Jiapeng
[1
]
Zhang, Siyi
[1
]
Xu, Hu
[3
]
Fang, Pengfei
[1
]
机构:
[1] Wuhan Univ, Sch Phys & Technol, Key Lab Nucl Solid State Phys Hubei Prov, Wuhan 430072, Peoples R China
[2] Dalian Minzu Univ, Sch Phys & Mat Engn, Dalian 116600, Peoples R China
[3] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Piezo-phototronic effect;
Z -scheme heterojunction;
Hydrogen evolution;
Tetracycline hydrochloride;
VISIBLE-LIGHT-DRIVEN;
HYDROGEN-PRODUCTION;
PERFORMANCE;
COMPOSITE;
BEHAVIOR;
CDS;
D O I:
10.1016/j.surfin.2024.105240
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The piezo-phototronic effect utilizes the piezoelectric polarization field to tune the photogenerated carrier separation and transport performance in heterojunctions, which portrays a promising strategy for addressing energy shortage and environmental pollutants. Herein, a novel Z-scheme piezoelectric semiconductor heterojunction, 2D-KNbO3/1D-CdS-x 3 /1D-CdS-x (KNCS-x), was fabricated using hydrothermal and solvothermal methods, resulting in enhanced redox capacity. Under the simultaneous light and strain, KNCS-15 exhibits the highest piezo-photocatalytic activity, with degradation rates of tetracycline hydrochloride degradation rate constant, H2O2 2 O 2 as well as H2 2 production rates being 1.806 x 10-- 2 s-1 , 45.56 mM center dot h-1 center dot g- h- 1 center dot g- 1 and 8.87 mmol center dot h-1 center dot g- h- 1 center dot g- 1 , respectively, which are 1.4, 2.4 and 1.9 times of photocatalysis alone, and 9.8, 9.2 and 9.8 times of piezocatalysis alone. DFT calculations, EPR and PALS indicate that the Z-scheme structure realizes effective separation of electron-hole pairs with strong redox ability and a higher carrier concentration. The enhanced catalytic activity is attributed to the introduction of piezoelectric potential, which facilitates improved spatial separation of electrons with high reduction and holes with high oxidation potential.
引用
收藏
页数:15
相关论文