Piezoelectric field accelerating charge transfer in Z-scheme heterojunction 2D-KNbO3/1D-CdS for efficient piezo-photocatalytic H2 evolution and TCH degradation

被引:0
|
作者
Ma, Wenmei [1 ]
Du, Shiwen [2 ]
Suo, Shilong [1 ]
Li, Yuanyuan [1 ]
Guo, Jiacheng [1 ]
Wang, Yumin [1 ]
Han, Ziwu [1 ]
Chen, Chang [1 ]
Fang, Jiapeng [1 ]
Zhang, Siyi [1 ]
Xu, Hu [3 ]
Fang, Pengfei [1 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Key Lab Nucl Solid State Phys Hubei Prov, Wuhan 430072, Peoples R China
[2] Dalian Minzu Univ, Sch Phys & Mat Engn, Dalian 116600, Peoples R China
[3] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Piezo-phototronic effect; Z -scheme heterojunction; Hydrogen evolution; Tetracycline hydrochloride; VISIBLE-LIGHT-DRIVEN; HYDROGEN-PRODUCTION; PERFORMANCE; COMPOSITE; BEHAVIOR; CDS;
D O I
10.1016/j.surfin.2024.105240
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The piezo-phototronic effect utilizes the piezoelectric polarization field to tune the photogenerated carrier separation and transport performance in heterojunctions, which portrays a promising strategy for addressing energy shortage and environmental pollutants. Herein, a novel Z-scheme piezoelectric semiconductor heterojunction, 2D-KNbO3/1D-CdS-x 3 /1D-CdS-x (KNCS-x), was fabricated using hydrothermal and solvothermal methods, resulting in enhanced redox capacity. Under the simultaneous light and strain, KNCS-15 exhibits the highest piezo-photocatalytic activity, with degradation rates of tetracycline hydrochloride degradation rate constant, H2O2 2 O 2 as well as H2 2 production rates being 1.806 x 10-- 2 s-1 , 45.56 mM center dot h-1 center dot g- h- 1 center dot g- 1 and 8.87 mmol center dot h-1 center dot g- h- 1 center dot g- 1 , respectively, which are 1.4, 2.4 and 1.9 times of photocatalysis alone, and 9.8, 9.2 and 9.8 times of piezocatalysis alone. DFT calculations, EPR and PALS indicate that the Z-scheme structure realizes effective separation of electron-hole pairs with strong redox ability and a higher carrier concentration. The enhanced catalytic activity is attributed to the introduction of piezoelectric potential, which facilitates improved spatial separation of electrons with high reduction and holes with high oxidation potential.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Pyrene-benzothiadiazole-based Polymer/CdS 2D/2D Organic/Inorganic Hybrid S-scheme Heterojunction for Efficient Photocatalytic H2 Evolution
    Ruiqi Gao
    Huan He
    Junxian Bai
    Lei Hao
    Rongchen Shen
    Peng Zhang
    Youji Li
    Xin Li
    Chinese Journal of Structural Chemistry, 2022, 41 (06) : 31 - 45
  • [32] Hydrothermal synthesis of WO3/CoS2 n-n heterojunction for Z-scheme photocatalytic H2 evolution
    Ma, Lijun
    Xu, Jing
    Li, Lingjiao
    Mao, Min
    Zhao, Sheng
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (42) : 18326 - 18336
  • [33] Z-scheme promoted interfacial charge transfer on Cu/In-porphyrin MOFs/ CdIn2S4 heterostructure for efficient photocatalytic H2 evolution
    Wang, Sheng
    Hu, Guangjie
    Dou, Yandong
    Li, Shihao
    Li, Mingming
    Feng, Huiyi
    Feng, Yi-Si
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [34] Effective promotion of spacial charge separation in direct Z-scheme WO3/CdS/WS2 tandem heterojunction with enhanced visible-light-driven photocatalytic H2 evolution
    Xue, Chao
    Zhang, Peng
    Shao, Guosheng
    Yang, Guidong
    CHEMICAL ENGINEERING JOURNAL, 2020, 398
  • [35] Fabrication of 1D/2D CdS/CoSx direct Z-scheme photocatalyst with enhanced photocatalytic hydrogen evolution performance
    Li, Weibing
    Fang, Ke
    Zhang, Yanguang
    Chen, Zhiwei
    Wang, Lei
    Bu, Yuyu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (14) : 9351 - 9359
  • [36] 1D-2D Z-scheme junction by coupling CaTiO3 rectangular nanorods with CdS nanosheets enhances photocatalytic hydrogen evolution
    Zhang, Wuxia
    Xiong, Jinyan
    Li, Shaozhong
    Li, Wei
    MOLECULAR CATALYSIS, 2025, 570
  • [37] Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation
    Jo, Wan-Kuen
    Selvam, N. Clament Sagaya
    CHEMICAL ENGINEERING JOURNAL, 2017, 317 : 913 - 924
  • [38] Promoting photocatalytic H2 evolution through interfacial charge separation on the direct Z-scheme ZnIn2S4/ZrO2 heterojunction
    Xie, Ziyu
    Liu, Guozhong
    Xie, Linjun
    Wu, Panpan
    Liu, Haizhen
    Wang, Jiangli
    Xie, Yiming
    Chen, Jing
    Lu, Can-Zhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (84) : 32782 - 32796
  • [39] Synergistically Enhanced Photocatalytic Degradation by Coupling Slow-Photon Effect with Z-Scheme Charge Transfer in CdS QDs/IO-TiO2 Heterojunction
    Zhu, Li-Bang
    Bao, Ning
    Zhang, Qing
    Ding, Shou-Nian
    MOLECULES, 2023, 28 (14):
  • [40] Construction of rGO-coupled C3N4/C3N5 2D/2D Z-scheme heterojunction to accelerate charge separation for efficient visible light H2 evolution
    Liu, Dong
    Yao, Jia
    Chen, Shentao
    Zhang, Jing
    Li, Renjie
    Peng, Tianyou
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 318