Excluding a Line from Complex-Representable Matroids

被引:0
|
作者
Geelen, Jim
Nelson, Peter
Walsh, Zach
机构
关键词
Matroids; MINOR-CLOSED CLASSES; BIASED GRAPHS; COMBINATORIAL GEOMETRIES; GF(3); OBSTRUCTIONS; FIELDS; NUMBER; GF(Q);
D O I
10.1090/memo/1523
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each positive integer t and each sufficiently large integer r , we show that the maximum number of elements of a simple, rank-r, C- representable matroid with no U 2,t+3-minor is t( r ) + r . We derive this as a consequence of a much more general 2 result concerning matroids on group-labeled graphs.
引用
收藏
页数:104
相关论文
共 50 条
  • [41] A family of non-representable multipartite secret sharing matroids
    Xu, Jing-Fang
    Cui, Guo-Hua
    Cheng, Qi
    Zhang, Zhi
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (01): : 117 - 122
  • [43] Lindstrim's conjecture on a class of algebraically non-representable matroids
    Flórez, R
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (06) : 896 - 905
  • [44] Computing excluded minors for classes of matroids representable over partial fields
    Brettell, Nick
    Pendavingh, Rudi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (03):
  • [45] Orienting matroids representable over both GF(3) and GF(5)
    Lee, J
    EUROPEAN JOURNAL OF COMBINATORICS, 1999, 20 (08) : 833 - 838
  • [46] Design of ideal secret sharing based on new results on representable quadripartite matroids
    Hsu, Chingfang
    Harn, Lein
    Xia, Zhe
    Zhang, Maoyuan
    Li, Quanrun
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2021, 58
  • [47] Excluding a Bipartite Circle Graph from Line Graphs
    Oum, Sang-il
    JOURNAL OF GRAPH THEORY, 2009, 60 (03) : 183 - 203
  • [48] The es-splitting Operation for Matroids Representable Over Prime Fields GF(p)
    Malavadkar, Prashant
    Gunjal, Sachin
    Jagadale, Uday
    Shikare, M. M.
    Waphare, B. N.
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 1 - 10
  • [49] Foundations for a Theory of Complex Matroids
    Anderson, Laura
    Delucchi, Emanuele
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (04) : 807 - 846
  • [50] On the topology of a boolean representable simplicial complex
    Margolis, Stuart
    Rhodes, John
    Silva, Pedro V.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2017, 27 (01) : 121 - 156