Excluding a Line from Complex-Representable Matroids

被引:0
|
作者
Geelen, Jim
Nelson, Peter
Walsh, Zach
机构
关键词
Matroids; MINOR-CLOSED CLASSES; BIASED GRAPHS; COMBINATORIAL GEOMETRIES; GF(3); OBSTRUCTIONS; FIELDS; NUMBER; GF(Q);
D O I
10.1090/memo/1523
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each positive integer t and each sufficiently large integer r , we show that the maximum number of elements of a simple, rank-r, C- representable matroid with no U 2,t+3-minor is t( r ) + r . We derive this as a consequence of a much more general 2 result concerning matroids on group-labeled graphs.
引用
收藏
页数:104
相关论文
共 50 条
  • [11] On decidability of MSO theories of representable matroids
    Hlineny, P
    Seese, D
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 96 - 107
  • [12] Non-representable hyperbolic matroids
    Amini, Nima
    Branden, Petter
    ADVANCES IN MATHEMATICS, 2018, 334 : 417 - 449
  • [13] ON THE MATROIDS REPRESENTABLE OVER GF(4)
    OXLEY, JG
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (02) : 250 - 252
  • [14] NON-REPRESENTABLE ORIENTED MATROIDS
    MANDEL, A
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1982, 54 (03): : 594 - 594
  • [15] Relaxations of GF(4)-representable matroids
    Clark, Ben
    Oxley, James
    van Zwam, Stefan H. M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [16] Stabilizers for GF(5)-representable matroids
    Kingan, S. R.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 49 : 203 - 207
  • [17] A note on clone sets in representable matroids
    Reid, Talmage J.
    Robbins, Jakayla R.
    DISCRETE MATHEMATICS, 2006, 306 (17) : 2128 - 2130
  • [18] Completion and decomposition of a clutter into representable matroids
    Marti-Farre, Jaume
    de Mier, Anna
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 472 : 31 - 47
  • [19] A note on gf(5)-representable matroids
    Betten, A.
    Kingan, R. J.
    Kingan, S. R.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2007, 58 (02) : 511 - 521
  • [20] On some classes of linear representable matroids
    Revyakin, AM
    FORMAL POWER SERIES AND ALGEBRAIC COMBINATORICS, 2000, : 564 - 574