New EAQEC codes from LCP of codes over finite non-chain rings

被引:0
|
作者
Hu, Peng [1 ]
Liu, Xiusheng [2 ]
机构
[1] Hubei Polytech Univ, Sch Math & Phys, Huangshi 435003, Hubei, Peoples R China
[2] Hubei Normal Univ, Coll Arts & Sci, Sch Sci & Technol, Huangshi 435109, Hubei, Peoples R China
关键词
EAQEC codes; LCP of codes; Constacyclic codes; QUANTUM MDS CODES; CYCLIC CODES; CONSTRUCTIONS; PAIRS;
D O I
10.1007/s11128-025-04687-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we first study the linear complementary pair (abbreviated to LCP) of codes over finite non-chain rings Ru,v,q=Fq+uFq+vFq+uvFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{u,v,q}={\mathbb {F}}_q+u{\mathbb {F}}_q+ v{\mathbb {F}}_q+uv{\mathbb {F}}_q$$\end{document} with u2=u,v2=v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u<^>2=u,v<^>2=v$$\end{document}. Then we provide a method of constructing entanglement-assisted quantum error-correcting (abbreviated to EAQEC) codes from an LCP of codes of length n over Ru,v,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{u,v,q}$$\end{document} using CSS. To enrich the variety of available EAQEC codes, some new EAQEC codes are given in the sense that their parameters are different from all the previous constructions.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] On Codes over Local Frobenius Non-Chain Rings of Order 16
    Martinez-Moro, Edgar
    Szabo, Steve
    NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 : 227 - 241
  • [32] New Z4 codes from constacyclic codes over a non-chain ring
    Islam, Habibul
    Prakash, Om
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (01):
  • [33] Optimal binary codes from trace codes over a non-chain ring
    Shi, Minjia
    Liu, Yan
    Sole, Patrick
    DISCRETE APPLIED MATHEMATICS, 2017, 219 : 176 - 181
  • [34] l-LCP of codes and their applications to EAQEC codes
    Liu, Jie
    Liu, Xiusheng
    QUANTUM INFORMATION PROCESSING, 2023, 22 (05)
  • [35] LCP of group codes over finite Frobenius rings
    Xiusheng Liu
    Hualu Liu
    Designs, Codes and Cryptography, 2023, 91 : 695 - 708
  • [36] LCP of group codes over finite Frobenius rings
    Liu, Xiusheng
    Liu, Hualu
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (03) : 695 - 708
  • [37] Lifted codes and lattices from codes over finite chain rings
    Bouzara, Reguia Lamia
    Guenda, Kenza
    Martinez-Moro, Edgar
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (05): : 1009 - 1020
  • [38] Lifted codes and lattices from codes over finite chain rings
    Reguia Lamia Bouzara
    Kenza Guenda
    Edgar Martínez-Moro
    Cryptography and Communications, 2022, 14 : 1009 - 1020
  • [39] Quantum codes from linear codes over finite chain rings
    Liu, Xiusheng
    Liu, Hualu
    QUANTUM INFORMATION PROCESSING, 2017, 16 (10)
  • [40] Quantum codes from linear codes over finite chain rings
    Xiusheng Liu
    Hualu Liu
    Quantum Information Processing, 2017, 16