New EAQEC codes from LCP of codes over finite non-chain rings

被引:0
|
作者
Hu, Peng [1 ]
Liu, Xiusheng [2 ]
机构
[1] Hubei Polytech Univ, Sch Math & Phys, Huangshi 435003, Hubei, Peoples R China
[2] Hubei Normal Univ, Coll Arts & Sci, Sch Sci & Technol, Huangshi 435109, Hubei, Peoples R China
关键词
EAQEC codes; LCP of codes; Constacyclic codes; QUANTUM MDS CODES; CYCLIC CODES; CONSTRUCTIONS; PAIRS;
D O I
10.1007/s11128-025-04687-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we first study the linear complementary pair (abbreviated to LCP) of codes over finite non-chain rings Ru,v,q=Fq+uFq+vFq+uvFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{u,v,q}={\mathbb {F}}_q+u{\mathbb {F}}_q+ v{\mathbb {F}}_q+uv{\mathbb {F}}_q$$\end{document} with u2=u,v2=v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u<^>2=u,v<^>2=v$$\end{document}. Then we provide a method of constructing entanglement-assisted quantum error-correcting (abbreviated to EAQEC) codes from an LCP of codes of length n over Ru,v,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{u,v,q}$$\end{document} using CSS. To enrich the variety of available EAQEC codes, some new EAQEC codes are given in the sense that their parameters are different from all the previous constructions.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Good Linear Codes from Quadratic Residue Codes over a Finite Non-Chain Ring
    GAO Jian
    MA Fanghui
    ChineseJournalofElectronics, 2017, 26 (04) : 773 - 777
  • [22] Quantum and LCD codes from skew constacyclic codes over a finite non-chain ring
    Om Prakash
    Ram Krishna Verma
    Ashutosh Singh
    Quantum Information Processing, 22
  • [23] Good Linear Codes from Quadratic Residue Codes over a Finite Non-Chain Ring
    Gao Jian
    Ma Fanghui
    CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (04) : 773 - 777
  • [24] New Quantum Codes from Skew Constacyclic Codes Over a Class Of Non-Chain Rings R e, q
    Prakash, Om
    Islam, Habibul
    Patel, Shikha
    Sole, Patrick
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (09) : 3334 - 3352
  • [25] New quantum codes from constacyclic codes over a general non-chain ring
    Bhardwaj, Swati
    Goyal, Mokshi
    Raka, Madhu
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (06)
  • [26] Quantum and LCD codes from skew constacyclic codes over a general class of non-chain rings
    Rai, Pradeep
    Singh, Bhupendra
    Gupta, Ashok Ji
    QUANTUM INFORMATION PROCESSING, 2024, 23 (07)
  • [27] New quantum codes from constacyclic codes over finite chain rings
    Tang, Yongsheng
    Yao, Ting
    Xu, Heqian
    Kai, Xiaoshan
    QUANTUM INFORMATION PROCESSING, 2024, 23 (09)
  • [28] Constacyclic codes over finite local Frobenius non-chain rings with nilpotency index 3
    Castillo-Guillen, C. A.
    Renteria-Marquez, C.
    Tapia-Recillas, H.
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 : 1 - 21
  • [29] Duadic negacyclic codes over a finite non-chain ring
    Goyal, Mokshi
    Raka, Madhu
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (06)
  • [30] Duals of constacyclic codes over finite local Frobenius non-chain rings of length 4
    Castillo-Guillen, C. A.
    Renteria-Marquez, C.
    Tapia-Recillas, H.
    DISCRETE MATHEMATICS, 2018, 341 (04) : 919 - 933