Integrating Biocatalysts into Metal-Organic Frameworks: Disentangling the Roles of Affinity, Molecular Weight, and Size

被引:0
|
作者
Greifenstein, Raphael [1 ]
Roehrs, Dhana [1 ]
Ballweg, Tim [1 ]
Pfeifer, Juliana [1 ]
Gottwald, Eric [1 ]
Takamiya, Masanari [2 ]
Franzreb, Matthias [1 ]
Woell, Christof [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Funct Interfaces IFG, Bld 330,Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Karlsruhe Inst Technol KIT, Inst Biol & Chem Syst IBCS, Bld 439,Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
Metal-organic frameworks; Biocatalyst immobilization; Enzyme activity; ENZYME IMMOBILIZATION; CYTOCHROME-C; PLATFORM; MP-11; MOFS;
D O I
10.1002/cbic.202400625
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The integration of biocatalysts within metal-organic frameworks (MOFs) is attracting growing interest due to its potential to both enhance biocatalyst stability and sustain biocatalyst activity in organic solvents. However, the factors that facilitate the post-synthetic infiltration of such large molecules into MOF pores remain unclear. This systematic study enabled the identification of the influence of biocatalyst molecular size, molecular weight and affinity on the uptake by an archetypal MOF, NU-1000. We analyzed a range of six biocatalysts with molecular weights from 1.9 kDa to 44.4 kDa, respectively. By employing a combination of fluorescence tagging and 3D-STED confocal laser scanning microscopy, we distinguished between biocatalysts that were internalized within the MOF pores and those sterically excluded. The catalytic functions of the biocatalysts hosted within the MOF were investigated and found to show strong variations relative to the solvated case, ranging from a two-fold increase to a strong decrease.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Docking in Metal-Organic Frameworks
    Li, Qiaowei
    Zhang, Wenyu
    Miljanic, Ognjen S.
    Sue, Chi-Hau
    Zhao, Yan-Li
    Liu, Lihua
    Knobler, Carolyn B.
    Stoddart, J. Fraser
    Yaghi, Omar M.
    SCIENCE, 2009, 325 (5942) : 855 - 859
  • [42] Multivariate metal-organic frameworks
    Aasif Helal
    Zain H.Yamani
    Kyle E.Cordova
    Omar M.Yaghi
    National Science Review, 2017, 4 (03) : 296 - 298
  • [43] Ferroelectric Metal-Organic Frameworks
    Zhang, Wen
    Xiong, Ren-Gen
    CHEMICAL REVIEWS, 2012, 112 (02) : 1163 - 1195
  • [44] Plasmonic metal-organic frameworks
    Zheng, Guangchao
    Pastoriza-Santos, Isabel
    Perez-Juste, Jorge
    Liz-Marzan, Luis M.
    SMARTMAT, 2021, 2 (04): : 446 - 465
  • [45] Metal-organic frameworks: The pressure is on
    PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, Paris, France
    Acta Crystallogr. Sect. B Struct. Sci. Crys. Eng. Mater., (585-586):
  • [46] Gyroidal Metal-Organic Frameworks
    Zhou, Xiao-Ping
    Li, Mian
    Liu, Jie
    Li, Dan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (01) : 67 - 70
  • [47] Quantum Metal-Organic Frameworks
    Huang, Zhehao
    Geilhufe, Richard Matthias
    SMALL SCIENCE, 2024, 4 (10):
  • [48] Metal-Organic Frameworks in Motion
    Terzopoulou, Anastasia
    Nicholas, James D.
    Chen, Xiang-Zhong
    Nelson, Bradley J.
    Pane, Salvador
    Puigmarti-Luis, Josep
    CHEMICAL REVIEWS, 2020, 120 (20) : 11175 - 11193
  • [49] Metal-organic frameworks: the pressure is on
    Coudert, Francois-Xavier
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2015, 71 : 585 - 586
  • [50] Introduction to Metal-Organic Frameworks
    Zhou, Hong-Cai
    Long, Jeffrey R.
    Yaghi, Omar M.
    CHEMICAL REVIEWS, 2012, 112 (02) : 673 - 674