Docking in Metal-Organic Frameworks

被引:330
|
作者
Li, Qiaowei [1 ]
Zhang, Wenyu [1 ]
Miljanic, Ognjen S. [1 ]
Sue, Chi-Hau [2 ]
Zhao, Yan-Li [2 ]
Liu, Lihua [2 ]
Knobler, Carolyn B. [1 ]
Stoddart, J. Fraser [2 ]
Yaghi, Omar M. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
关键词
SUPRAMOLECULAR CHEMISTRY; SURFACE-AREA; DESIGN; MOLECULES;
D O I
10.1126/science.1175441
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The use of metal-organic frameworks (MOFs) so far has largely relied on nonspecific binding interactions to host small molecular guests. We used long organic struts (similar to 2 nanometers) incorporating 34- and 36-membered macrocyclic polyethers as recognition modules in the construction of several crystalline primitive cubic frameworks that engage in specific binding in a way not observed in passive, open reticulated geometries. MOF-1001 is capable of docking paraquat dication (PQT(2+)) guests within the macrocycles in a stereoelectronically controlled fashion. This act of specific complexation yields quantitatively the corresponding MOF-1001 pseudorotaxanes, as confirmed by x-ray diffraction and by solid-and solution-state nuclear magnetic resonance spectroscopic studies performed on MOF-1001, its pseudorotaxanes, and their molecular strut precursors. A control experiment involving the attempted inclusion of PQT(2+) inside a framework (MOF-177) devoid of polyether struts showed negligible uptake of PQT(2+), indicating the importance of the macrocyclic polyether in PQT(2+) docking.
引用
收藏
页码:855 / 859
页数:5
相关论文
共 50 条
  • [1] Application of molecular docking simulation to screening of metal-organic frameworks
    Keshavarz, Fatemeh
    Barbiellini, Bernardo
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2023, 226
  • [2] Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks
    Prakash, M. Jaya
    Lah, Myoung Soo
    [J]. CHEMICAL COMMUNICATIONS, 2009, (23) : 3326 - 3341
  • [3] Metal-organic frameworks
    James, SL
    [J]. CHEMICAL SOCIETY REVIEWS, 2003, 32 (05) : 276 - 288
  • [4] Metal-organic frameworks
    Birkett, Jim
    [J]. CHEMICAL & ENGINEERING NEWS, 2017, 95 (30) : 2 - 2
  • [5] Docking of CuI and AgI in Metal-Organic Frameworks for Adsorption and Separation of Xenon
    Wang, Haoze
    Shi, Zhaolin
    Yang, Jingjing
    Sun, Tu
    Rungtaweevoranit, Bunyarat
    Lyu, Hao
    Zhang, Yue-Biao
    Yaghi, Omar M.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (07) : 3417 - 3421
  • [6] Metal-Organic Frameworks and Metal-Organic Cages - A Perspective
    Pilgrim, Ben S.
    Champness, Neil R.
    [J]. CHEMPLUSCHEM, 2020, 85 (08): : 1842 - 1856
  • [7] Teaching Metal-Organic Frameworks to Conduct: Ion and Electron Transport in Metal-Organic Frameworks
    Kharod, Ruby A.
    Andrews, Justin L.
    Dinc, Mircea
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, 2022, 52 : 103 - 128
  • [8] Substitution reactions in metal-organic frameworks and metal-organic polyhedra
    Han, Yi
    Li, Jian-Rong
    Xie, Yabo
    Guo, Guangsheng
    [J]. CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) : 5952 - 5981
  • [9] Defect-Assisted Loading and Docking Conformations of Pharmaceuticals in Metal-Organic Frameworks
    Fu, Yao
    Kang, Zhengzhong
    Cao, Weicheng
    Yin, Jinglin
    Tu, Yaoquan
    Li, Jianhua
    Guan, Hanxi
    Wang, Yiran
    Wang, Qi
    Kong, Xueqian
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (14) : 7719 - 7727
  • [10] Metal-organic frameworks: the pressure is on
    Coudert, Francois-Xavier
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2015, 71 : 585 - 586