Severity prediction markers in dengue: a prospective cohort study using machine learning approach

被引:0
|
作者
Jean Pierre, Aashika Raagavi [1 ]
Green, Siva Ranganathan [2 ]
Anandaraj, Lokeshmaran [3 ]
Sivaprakasam, Manikandan [1 ]
Kasirajan, Anand [1 ]
Devaraju, Panneer [4 ]
Anumulapuri, Srilekha [5 ]
Mutheneni, Srinivasa Rao [5 ]
Balakrishna Pillai, Agieshkumar [1 ]
机构
[1] Sri Balaji Vidyapeeth Deemed Univ, MGM Adv Res Inst MGMARI, Pondicherry, India
[2] Sri Balaji Vidyapeeth Deemed Univ, Mahatma Gandhi Med Coll & Res Inst MGMCRI, Dept Gen Med, Pondicherry, India
[3] Sri Balaji Vidyapeeth Deemed Univ, Mahatma Gandhi Med Coll & Res Inst MGMCRI, Dept Community Med, Pondicherry, India
[4] Indian Council Med Res Vector Control Res Ctr ICMR, Med Complex, Pondicherry, India
[5] CSIR Indian Inst Chem Technol CSIR IICT, Dept Appl Biol, Hyderabad, India
关键词
Dengue; serotypes; thrombocytopenia; bleeding; real-time polymerase chain reaction (RT-PCR); machine learning models; VIRUSES; INDIA;
D O I
10.1080/1354750X.2024.2430997
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundDengue virus causes illnesses with or without warning indicators for severe complications. There are no clear prognostic signs linked to the disease outcomes.MethodsClinical and laboratory parameters among 102 adult including 17 severe dengue (SD), 33 with warning and 52 without warning signs during early and critical phases were analysed by statistical and machine learning (ML) models.ResultsIn classical statistics, abnormal ultrasound findings, platelet count and low lymphocytes were significantly linked with SD during the febrile phase, while low creatinine, high sodium and elevated AST/ALT during the critical phase. ML models highlighted AST/ALT and lymphocytes as key markers for distinguishing SD from non-severe dengue, aiding clinical decisions.ConclusionParameters like liver enzymes, platelet counts and USG findings were linked with SD.USG testing at an earlier phase of dengue and a point-of-care system for the quantification of AST/ALT levels may lead to an early prediction of SD.
引用
收藏
页码:557 / 564
页数:8
相关论文
共 50 条
  • [31] Machine learning prediction of postoperative major adverse cardiovascular events in geriatric patients: a prospective cohort study
    Peng, Xiran
    Zhu, Tao
    Wang, Tong
    Wang, Fengjun
    Li, Ke
    Hao, Xuechao
    BMC ANESTHESIOLOGY, 2022, 22 (01)
  • [32] Machine learning prediction of postoperative major adverse cardiovascular events in geriatric patients: a prospective cohort study
    Xiran Peng
    Tao Zhu
    Tong Wang
    Fengjun Wang
    Ke Li
    Xuechao Hao
    BMC Anesthesiology, 22
  • [33] Circulating lncRNAs as biomarkers for severe dengue using a machine learning approach
    Katz, Rodolfo
    Nam, Nguyen Minh
    Campos, Tulio de Lima
    Indenbaum, Victoria
    Terenteva, Sophie
    Hang, Dinh Thi Thu
    Hoi, Le Thi
    Danielli, Amos
    Lustig, Yaniv
    Schwartz, Eli
    Van Tong, Hoang
    Sklan, Ella H.
    JOURNAL OF INFECTION, 2025, 90 (04)
  • [34] VALIDATION OF A MACHINE LEARNING MODEL IN A PROSPECTIVE COHORT: THE RISQ STUDY
    Ho, Kai Man Alexander
    Rosenfeld, Avi
    Hogan, Aine
    McBain, Hazel
    Duku, Margaret
    Wolfson, Paul
    Hennelly, Laura
    Macabodbod, Lester
    Lovat, Laurence
    GUT, 2022, 71 : A92 - A92
  • [35] Comparison of Machine Learning Techniques for Mortality Prediction in a Prospective Cohort of Older Adults
    Tedesco, Salvatore
    Andrulli, Martina
    Larsson, Markus akerlund
    Kelly, Daniel
    Alamaeki, Antti
    Timmons, Suzanne
    Barton, John
    Condell, Joan
    O'Flynn, Brendan
    Nordstroem, Anna
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (23)
  • [36] Preventing inpatient falls with injuries using integrative machine learning prediction: a cohort study
    Lin Wang
    Zhong Xue
    Chika F. Ezeana
    Mamta Puppala
    Shenyi Chen
    Rebecca L. Danforth
    Xiaohui Yu
    Tiancheng He
    Mark L. Vassallo
    Stephen T. C. Wong
    npj Digital Medicine, 2
  • [37] Biochemical alterations as prediction markers for the severity of illness in dengue fever patients
    Villar-Centeno, Luis Angel
    Lozano-Parra, Anyela
    Salgado-Garcia, Doris
    Herran, Oscar F.
    BIOMEDICA, 2013, 33 : 63 - 69
  • [38] Preventing inpatient falls with injuries using integrative machine learning prediction: a cohort study
    Wang, Lin
    Xue, Zhong
    Ezeana, Chika F.
    Puppala, Mamta
    Chen, Shenyi
    Danforth, Rebecca L.
    Yu, Xiaohui
    He, Tiancheng
    Vassallo, Mark L.
    Wong, Stephen T. C.
    NPJ DIGITAL MEDICINE, 2019, 2 (1)
  • [39] Panic Attack Prediction Using Wearable Devices and Machine Learning: Development and Cohort Study
    Tsai, Chan-Hen
    Chen, Pei-Chen
    Liu, Ding-Shan
    Kuo, Ying-Ying
    Hsieh, Tsung-Ting
    Chiang, Dai-Lun
    Lai, Feipei
    Wu, Chia-Tung
    JMIR MEDICAL INFORMATICS, 2022, 10 (02)
  • [40] Proteomic prediction of diverse incident diseases: a machine learning-guided biomarker discovery study using data from a prospective cohort study
    Carrasco-Zanini, Julia
    Pietzner, Maik
    Koprulu, Mine
    Wheeler, Eleanor
    Kerrison, Nicola
    Wareham, Nicholas J.
    Langenberg, Claudia
    LANCET DIGITAL HEALTH, 2024, 6 (07): : e470 - e479