Severity prediction markers in dengue: a prospective cohort study using machine learning approach

被引:0
|
作者
Jean Pierre, Aashika Raagavi [1 ]
Green, Siva Ranganathan [2 ]
Anandaraj, Lokeshmaran [3 ]
Sivaprakasam, Manikandan [1 ]
Kasirajan, Anand [1 ]
Devaraju, Panneer [4 ]
Anumulapuri, Srilekha [5 ]
Mutheneni, Srinivasa Rao [5 ]
Balakrishna Pillai, Agieshkumar [1 ]
机构
[1] Sri Balaji Vidyapeeth Deemed Univ, MGM Adv Res Inst MGMARI, Pondicherry, India
[2] Sri Balaji Vidyapeeth Deemed Univ, Mahatma Gandhi Med Coll & Res Inst MGMCRI, Dept Gen Med, Pondicherry, India
[3] Sri Balaji Vidyapeeth Deemed Univ, Mahatma Gandhi Med Coll & Res Inst MGMCRI, Dept Community Med, Pondicherry, India
[4] Indian Council Med Res Vector Control Res Ctr ICMR, Med Complex, Pondicherry, India
[5] CSIR Indian Inst Chem Technol CSIR IICT, Dept Appl Biol, Hyderabad, India
关键词
Dengue; serotypes; thrombocytopenia; bleeding; real-time polymerase chain reaction (RT-PCR); machine learning models; VIRUSES; INDIA;
D O I
10.1080/1354750X.2024.2430997
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundDengue virus causes illnesses with or without warning indicators for severe complications. There are no clear prognostic signs linked to the disease outcomes.MethodsClinical and laboratory parameters among 102 adult including 17 severe dengue (SD), 33 with warning and 52 without warning signs during early and critical phases were analysed by statistical and machine learning (ML) models.ResultsIn classical statistics, abnormal ultrasound findings, platelet count and low lymphocytes were significantly linked with SD during the febrile phase, while low creatinine, high sodium and elevated AST/ALT during the critical phase. ML models highlighted AST/ALT and lymphocytes as key markers for distinguishing SD from non-severe dengue, aiding clinical decisions.ConclusionParameters like liver enzymes, platelet counts and USG findings were linked with SD.USG testing at an earlier phase of dengue and a point-of-care system for the quantification of AST/ALT levels may lead to an early prediction of SD.
引用
收藏
页码:557 / 564
页数:8
相关论文
共 50 条
  • [21] Machine learning-based prediction of acute severity in infants hospitalized for bronchiolitis: a multicenter prospective study
    Raita, Yoshihiko
    Camargo, Carlos A., Jr.
    Macias, Charles G.
    Mansbach, Jonathan M.
    Piedra, Pedro A.
    Porter, Stephen C.
    Teach, Stephen J.
    Hasegawa, Kohei
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [22] Prediction of COVID-19 severity using machine learning
    Karaduzovic-Hadziabdic, Kanita
    Adilovic, Muhamed
    Zhang, Lu
    Lumley, Andrew, I
    Shah, Pranay
    Shoaib, Muhammad
    Satagopam, Venkata
    Srivastava, Prashant Kumar
    Emanueli, Costanza
    Greco, Simona
    Made, Alisia
    Padro, Teresa
    Domingo, Pedro
    Lustrek, Mitja
    Scholz, Markus
    Rosolowski, Maciej
    Jordan, Marko
    Benczik, Bettina
    Agg, Bence
    Ferdinandy, Peter
    Baker, Andrew H.
    Fagherazzi, Guy
    Ollert, Markus
    Michel, Joanna
    Sanchez, Gabriel
    Firat, Hueseyin
    Brandenburger, Timo
    Martelli, Fabio
    Badimon, Lina
    Devaux, Yvan
    CLINICAL AND TRANSLATIONAL MEDICINE, 2024, 14 (10):
  • [23] Prediction of the severity of acute pancreatitis using machine learning models
    Zhou, You
    Han, Fei
    Shi, Xiao-Lei
    Zhang, Jun-Xian
    Li, Guang-Yao
    Yuan, Chen-Chen
    Lu, Guo-Tao
    Hu, Liang-Hao
    Pan, Jia-Jia
    Xiao, Wei-Ming
    Yao, Guang-Huai
    POSTGRADUATE MEDICINE, 2022, 134 (07) : 703 - 710
  • [24] Prediction of the severity of marine accidents using improved machine learning
    Feng, Yinwei
    Wang, Xinjian
    Chen, Qilei
    Yang, Zaili
    Wang, Jin
    Li, Huanhuan
    Xia, Guoqing
    Liu, Zhengjiang
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2024, 188
  • [25] The trauma severity model: An ensemble machine learning approach to risk prediction
    Gorczyca, Michael T.
    Toscano, Nicole C.
    Cheng, Julius D.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 108 : 9 - 19
  • [26] A novel approach to dementia prediction of DTI markers using BALI, LIBRA, and machine learning techniques
    Akbarifar, Ahmad
    Maghsoudpour, Adel
    Mohammadian, Fatemeh
    Mohammadzaheri, Morteza
    Ghaemi, Omid
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (06):
  • [27] Severity Prediction with Machine Learning Methods
    Geyik, Buket
    Kara, Medine
    2ND INTERNATIONAL CONGRESS ON HUMAN-COMPUTER INTERACTION, OPTIMIZATION AND ROBOTIC APPLICATIONS (HORA 2020), 2020, : 382 - 388
  • [28] Proinflammatory Markers in Prediction of Posttraumatic Psychological Symptoms: A Prospective Cohort Study
    Sutherland, Alasdair George
    Cameron, Gary A.
    Alexander, David A.
    Hutchison, James D.
    MEDIATORS OF INFLAMMATION, 2008, 2008
  • [29] Prediction of early death after atrial fibrillation diagnosis using a machine learning approach: A French nationwide cohort study
    Bisson, Arnaud
    Lemrini, Yassine
    Romiti, Giulio Francesco
    Proietti, Marco
    Angoulvant, Denis
    Bentounes, Sidahmed
    El-Bouri, Wahbi
    Lip, Gregory Y. H.
    Fauchier, Laurent
    AMERICAN HEART JOURNAL, 2023, 265 : 191 - 202
  • [30] Prediction of caregiver burden in amyotrophic lateral sclerosis: a machine learning approach using random forests applied to a cohort study
    Antoniadi, Anna Markella
    Galvin, Miriam
    Heverin, Mark
    Hardiman, Orla
    Mooney, Catherine
    BMJ OPEN, 2020, 10 (02):