A RIGOROUS APPROACH TO THE SHARP INTERFACE LIMIT FOR PHASE-FIELD MODELS OF TUMOR GROWTH\ast

被引:0
|
作者
Riva, Filippo [1 ]
Rocca, Elisabetta [2 ]
机构
[1] Univ Pavia, Dipartimento Matemat Felice Casorati, I-27100 Pavia, Italy
[2] Univ Pavia, IMATI CNR, Dipartimento Matemat Felice Casorati, I-27100 Pavia, Italy
关键词
Cahn--Hilliard equation; reaction-diffusion equation; sharp interface; diffuse interface; asymptotics; tumor growth; varifolds; CAHN-HILLIARD EQUATION; MEAN-CURVATURE FLOW; LONG-TIME BEHAVIOR; GAMMA-CONVERGENCE; WELL-POSEDNESS; DARCY SYSTEM; CHEMOTAXIS;
D O I
10.1137/24M1644523
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider two diffuse interface models for tumor growth coupling a the nutrient. The models are distinguished by the presence of two different coupling source terms. For such problems, we address the question of the limit, as the diffuse interface parameter tends to zero, from diffuse interface models to sharp interface ones, justifying rigorously what was deduced Appl. Sci., 26 (2016), pp. 1095--1148]. The resulting evolutions turn out to be varifold solutions to Mullins-Sekerka type flows for the tumor region suitably coupled with the equation for the nutrient.
引用
收藏
页码:65 / 94
页数:30
相关论文
共 50 条
  • [21] Sharp-crack limit of a phase-field model for brittle fracture
    da Silva, Milton N., Jr.
    Duda, Fernando P.
    Fried, Eliot
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2013, 61 (11) : 2178 - 2195
  • [22] Analysis and Numerical Solution of Stochastic Phase-Field Models of Tumor Growth
    Lima, Ernesto A. B. F.
    Almeida, Regina C.
    Oden, J. Tinsley
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (02) : 552 - 574
  • [23] Optimal control of stochastic phase-field models related to tumor growth
    Orrieri, Carlo
    Rocca, Elisabetta
    Scarpa, Luca
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [24] A hysteresis approach to phase-field models
    Krejcí, P
    Sprekels, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (05) : 569 - 586
  • [25] SHARP INTERFACE LIMIT IN A PHASE FIELD MODEL OF CELL MOTILITY
    Berlyand, Leonid
    Potomkin, Mykhailo
    Rybalko, Volodymyr
    NETWORKS AND HETEROGENEOUS MEDIA, 2017, 12 (04) : 551 - 590
  • [26] Varifold solutions of a sharp interface limit of a diffuse interface model for tumor growth
    Melchionna, Stefano
    Rocca, Elisabetta
    INTERFACES AND FREE BOUNDARIES, 2017, 19 (04) : 571 - 590
  • [27] SHARP INTERFACE LIMIT FOR A PHASE FIELD MODEL IN STRUCTURAL OPTIMIZATION
    Blank, Luise
    Garcke, Harald
    Hecht, Claudia
    Rupprecht, Christoph
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (03) : 1558 - 1584
  • [28] Parametric links among Monte Carlo, phase-field, and sharp-interface models of interfacial motion
    Liu, P
    Lusk, MT
    PHYSICAL REVIEW E, 2002, 66 (06): : 8
  • [29] Morphology: from sharp interface to phase field models
    Sekerka, RF
    JOURNAL OF CRYSTAL GROWTH, 2004, 264 (04) : 530 - 540
  • [30] Computationally efficient phase-field models with interface kinetics
    Vetsigian, K
    Goldenfeld, N
    PHYSICAL REVIEW E, 2003, 68 (06):