Optimal control of stochastic phase-field models related to tumor growth

被引:11
|
作者
Orrieri, Carlo [1 ]
Rocca, Elisabetta [2 ,3 ]
Scarpa, Luca [4 ]
机构
[1] Univ Trento, Dept Math, Via Sommar 14, I-38123 Povo, Trento, Italy
[2] Univ Pavia, Dept Math, Via Ferrata 5, I-27100 Pavia, Italy
[3] CNR, IMATI, Via Ferrata 5, I-27100 Pavia, Italy
[4] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Stochastic systems of partial differential equations; Cahn-Hilliard equation; optimal control; first-order necessary conditions; tumor growth; OPTIMAL DISTRIBUTED CONTROL; DIFFUSE INTERFACE MODEL; CAHN-HILLIARD EQUATION; MAXIMUM PRINCIPLE; DARCY MODEL; SOLID TUMOR; SPDES; EXISTENCE; SYSTEM; DRIVEN;
D O I
10.1051/cocv/2020022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study a stochastic phase-field model for tumor growth dynamics coupling a stochastic Cahn-Hilliard equation for the tumor phase parameter with a stochastic reaction-diffusion equation governing the nutrient proportion. We prove strong well-posedness of the system in a general framework through monotonicity and stochastic compactness arguments. We introduce then suitable controls representing the concentration of cytotoxic drugs administered in medical treatment and we analyze a related optimal control problem. We derive existence of an optimal strategy and deduce first-order necessary optimality conditions by studying the corresponding linearized system and the backward adjoint system.
引用
下载
收藏
页数:46
相关论文
共 50 条
  • [1] Analysis and Numerical Solution of Stochastic Phase-Field Models of Tumor Growth
    Lima, Ernesto A. B. F.
    Almeida, Regina C.
    Oden, J. Tinsley
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (02) : 552 - 574
  • [2] The phase-field model in tumor growth
    Travasso, Rui D. M.
    Castro, Mario
    Oliveira, Joana C. R. E.
    PHILOSOPHICAL MAGAZINE, 2011, 91 (01) : 183 - 206
  • [3] The optimal time control of a phase-field system
    Wang, LJ
    Wang, GS
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) : 1483 - 1508
  • [4] Phase-field models for fatigue crack growth
    Mesgarnejad, A.
    Imanian, A.
    Karma, A.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2019, 103
  • [5] Phase-Field Models for Solidification and Crystal Growth
    Ohno, Munekazu
    INTERNATIONAL JOURNAL OF MICROGRAVITY SCIENCE AND APPLICATION, 2013, 30 (01): : 24 - 29
  • [6] Local and nonlocal phase-field models of tumor growth and invasion due to ECM degradation
    Fritz, Marvin
    Lima, Ernesto A. B. F.
    Nikolic, Vanja
    Oden, J. Tinsley
    Wohlmuth, Barbara
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (13): : 2433 - 2468
  • [7] OPTIMAL DISTRIBUTED CONTROL FOR A COUPLED PHASE-FIELD SYSTEM
    Chen, Bosheng
    Li, Huilai
    Liu, Changchun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (03): : 1789 - 1825
  • [8] Simulations of phase-field models for crystal growth and phase separation
    Cartalade, Alain
    Younsi, Amina
    Regnier, Elise
    Schuller, Sophie
    2ND INTERNATIONAL SUMMER SCHOOL ON NUCLEAR GLASS WASTEFORM: STRUCTURE, PROPERTIES AND LONG-TERM BEHAVIOR (SUMGLASS 2013), 2014, 7 : 72 - 78
  • [9] Universal dynamics of phase-field models for dendritic growth
    Kim, YT
    Provatas, N
    Goldenfeld, N
    Dantzig, J
    PHYSICAL REVIEW E, 1999, 59 (03): : R2546 - R2549
  • [10] Universal dynamics of phase-field models for dendritic growth
    Department of Physics, Univ. Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, United States
    不详
    Phys Rev E., 3 PART A (R2546-R2549):