Performance characterization of x-ray crystal spectroscopy highly oriented pyrolytic graphite reflectors based on x-ray diffractometry experiments

被引:0
|
作者
Lu, Dian [1 ,2 ]
Cheng, Zhifeng [3 ]
Zhao, Tianlei [4 ]
Yuan, Lingxiong [4 ]
Gao, Lan [5 ]
Klabacha, Jonathan [5 ]
Pablant, Novimir [5 ]
Tieulent, Raphael [3 ]
Lin, Zichao [1 ]
Jin, Yifei [1 ]
Fan, Yu [1 ]
Fu, Jia [1 ]
Zhang, Hongming [1 ]
Lyu, Bo [1 ]
Wang, Fudi [1 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, HFIPS, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Sci Isl Branch, Grad Sch, Hefei 230031, Peoples R China
[3] ITER Org, Route de Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
[4] Univ Sci & Technol China, CAS Key Lab Crust Mantle Mat & Environm, Hefei 230026, Peoples R China
[5] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2025年 / 96卷 / 01期
基金
中国国家自然科学基金;
关键词
DESIGN; ITER;
D O I
10.1063/5.0220878
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The use of Highly Oriented Pyrolytic Graphite (HOPG) reflectors is often proposed in the design of X-ray Crystal Spectroscopy (XCS) diagnostic systems for the next-generation tokamak devices, including the ITER project. This study introduces an experimental study based on the X-Ray Diffractometry (XRD) method to evaluate the performance of HOPG reflectors. The experimental method provides both the angular responses and the reflectivities of the HOPG reflectors. A demonstrative XRD experiment is conducted, and the details of the experiment are introduced. This method enables precise studies on HOPG reflectors, facilitating the design of XCS diagnostic systems for future tokamaks.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Effect of x-ray beamline optics on x-ray photon correlation spectroscopy experiments
    Sandy, A. R.
    Evans-Lutterodt, K.
    Fezzaa, K.
    Kim, S.
    Narayanan, S.
    Sprung, M.
    Stein, A.
    ADVANCES IN X-RAY/EUV OPTICS AND COMPONENTS II, 2007, 6705
  • [32] CHARACTERIZATION OF THIN-FILMS BY X-RAY DIFFRACTOMETRY
    PARRISH, W
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1973, 10 (01): : 277 - &
  • [33] Quantitative characterization of an x-ray source in an x-ray photoelectron spectroscopy system
    Pepper, SV
    Wheeler, DR
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (03): : 1509 - 1515
  • [34] Structure characterization of coated materials by X-ray diffractometry
    Roentgendiffraktometrische Strukturcharakterisierung beschichteter Werkstoffe
    Oettel, Heinrich, 1600, (34):
  • [35] A secondary graphite crystal spectrometer for anomalous X-ray diffraction experiments
    Stachs, O
    Petkov, V
    Himmel, B
    Gerber, T
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 434 (2-3): : 473 - 477
  • [36] Secondary graphite crystal spectrometer for anomalous X-ray diffraction experiments
    Stachs, O.
    Petkov, V.
    Himmel, B.
    Gerber, T.
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 434 (02): : 473 - 477
  • [37] Streak Patterns Observed in Small Angle X-Ray Scattering from Highly Oriented Pyrolytic Graphite (HOPG)
    Ohmasa, Yoshinori
    Chiba, Ayano
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2021, 235 (1-2): : 37 - 57
  • [38] X-ray absorption spectroscopy of graphite oxide
    Jeong, H. -K.
    Noh, H. -J.
    Kim, J. -Y.
    Jin, M. H.
    Park, C. Y.
    Lee, Y. H.
    EPL, 2008, 82 (06)
  • [39] High order reflectivity of highly oriented pyrolytic graphite crystals for x-ray energies up to 22 keV
    Doeppner, T.
    Neumayer, P.
    Girard, F.
    Kugland, N. L.
    Landen, O. L.
    Niemann, C.
    Glenzer, S. H.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [40] X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite
    Bavand, R.
    Yelon, A.
    Sacher, E.
    APPLIED SURFACE SCIENCE, 2015, 355 : 279 - 289