Analog filters based on the Mittag-Leffler functions

被引:0
|
作者
Allagui, Anis [1 ,2 ]
Elwakil, Ahmed S. [3 ,4 ,5 ]
Nako, Julia [6 ]
Psychalinos, Costas [6 ]
机构
[1] Univ Sharjah, Dept Sustainable & Renewable Energy Engn, POB 27272, Sharjah, U Arab Emirates
[2] Univ Sharjah, Dept Elect & Comp Engn, Miami, FL 33174 USA
[3] Univ Sharjah, Dept Elect Engn, POB 27272, Sharjah, U Arab Emirates
[4] Univ Calgary, Dept Elect & Software Engn, Calgary, AB, Canada
[5] Nile Univ, Nanoelect Integrated Syst Ctr NISC, Giza, Egypt
[6] Univ Patras, Dept Phys, Elect Lab, GR-26504 Patras, Greece
关键词
Analog signal processing; Mittag-Leffler function; Fractional-order filters; Dirac delta function; Field programmable analog array; PRACTICAL REALIZATION; BUTTERWORTH FILTER;
D O I
10.1016/j.sigpro.2025.109953
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose and study anew class of filters (named hereinafter the Mittag-Leffler filters) based on the MittagLeffler function E alpha,beta(z) in its single-parameter or double-parameter forms by transposing its argument to the frequency-domain; i.e. z = -s = -jco. A unique feature of these filters is that their impulse response is a Gaussian-like (delta-like) deformed and delayed impulse function for which we derive exact expressions using the H-Fox function. We also study the frequency response of this class of filters and obtain lower-order, realizable integer-order approximations of its transfer functions. A second-order curve-fitting approximation is then used to perform experimental results using a Field Programmable Analog Array platform to verify the theory.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] The role of Mittag-Leffler functions in anomalous relaxation
    Crothers, DSF
    Holland, D
    Kalmykov, YP
    Coffey, W
    JOURNAL OF MOLECULAR LIQUIDS, 2004, 114 (1-3) : 27 - 34
  • [42] Overconvergence of series in generalized mittag-leffler functions
    Paneva-Konovska J.
    Fractional Calculus and Applied Analysis, 2017, 20 (2) : 506 - 520
  • [43] The Integral Mittag-Leffler, Whittaker and Wright Functions
    Apelblat, Alexander
    Gonzalez-Santander, Juan Luis
    MATHEMATICS, 2021, 9 (24)
  • [44] RADII PROBLEMS FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS
    Prajapati, Anuja
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (04) : 1031 - 1052
  • [45] Fractional derivatives of the generalized Mittag-Leffler functions
    Denghao Pang
    Wei Jiang
    Azmat U. K. Niazi
    Advances in Difference Equations, 2018
  • [46] Fractional derivatives of the generalized Mittag-Leffler functions
    Pang, Denghao
    Jiang, Wei
    Niazi, Azmat U. K.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [47] Certain geometric properties of Mittag-Leffler functions
    Noreen, Saddaf
    Raza, Mohsan
    Malik, Sarfraz Nawaz
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [48] On the Mittag-Leffler distributions
    Lin, GD
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 74 (01) : 1 - 9
  • [49] Some properties of the Mittag-Leffler functions and their relation with the Wright functions
    Kurulay, Muhammet
    Bayram, Mustafa
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [50] Mittag-Leffler modules
    Rothmaler, P
    ANNALS OF PURE AND APPLIED LOGIC, 1997, 88 (2-3) : 227 - 239