Analog filters based on the Mittag-Leffler functions

被引:0
|
作者
Allagui, Anis [1 ,2 ]
Elwakil, Ahmed S. [3 ,4 ,5 ]
Nako, Julia [6 ]
Psychalinos, Costas [6 ]
机构
[1] Univ Sharjah, Dept Sustainable & Renewable Energy Engn, POB 27272, Sharjah, U Arab Emirates
[2] Univ Sharjah, Dept Elect & Comp Engn, Miami, FL 33174 USA
[3] Univ Sharjah, Dept Elect Engn, POB 27272, Sharjah, U Arab Emirates
[4] Univ Calgary, Dept Elect & Software Engn, Calgary, AB, Canada
[5] Nile Univ, Nanoelect Integrated Syst Ctr NISC, Giza, Egypt
[6] Univ Patras, Dept Phys, Elect Lab, GR-26504 Patras, Greece
关键词
Analog signal processing; Mittag-Leffler function; Fractional-order filters; Dirac delta function; Field programmable analog array; PRACTICAL REALIZATION; BUTTERWORTH FILTER;
D O I
10.1016/j.sigpro.2025.109953
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose and study anew class of filters (named hereinafter the Mittag-Leffler filters) based on the MittagLeffler function E alpha,beta(z) in its single-parameter or double-parameter forms by transposing its argument to the frequency-domain; i.e. z = -s = -jco. A unique feature of these filters is that their impulse response is a Gaussian-like (delta-like) deformed and delayed impulse function for which we derive exact expressions using the H-Fox function. We also study the frequency response of this class of filters and obtain lower-order, realizable integer-order approximations of its transfer functions. A second-order curve-fitting approximation is then used to perform experimental results using a Field Programmable Analog Array platform to verify the theory.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Numerical evaluation of Mittag-Leffler functions
    William McLean
    Calcolo, 2021, 58
  • [22] Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics
    E. Capelas de Oliveira
    F. Mainardi
    J. Vaz
    The European Physical Journal Special Topics, 2011, 193 : 161 - 171
  • [23] On zeros of a certain family of Mittag-Leffler functions
    Popov A.Yu.
    Journal of Mathematical Sciences, 2007, 144 (4) : 4228 - 4231
  • [24] Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics
    de Oliveira, E. Capelas
    Mainardi, F.
    Vaz, J., Jr.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01): : 161 - 171
  • [25] MITTAG-LEFFLER FUNCTIONS AND THEIR APPLICATIONS IN NETWORK SCIENCE
    Arrigo, Francesca
    Durastante, Fabio
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (04) : 1581 - 1601
  • [26] ON A MULTIVARIABLE CLASS OF MITTAG-LEFFLER TYPE FUNCTIONS
    Parmar, Rakesh Kumar
    Luo, Minjie
    Raina, Ravinder Krishna
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (04): : 981 - 999
  • [27] Hermite—Padé Approximants of the Mittag-Leffler Functions
    A. P. Starovoitov
    Proceedings of the Steklov Institute of Mathematics, 2018, 301 : 228 - 244
  • [28] Mittag-Leffler type functions of three variables
    Hasanov, Anvar
    Yuldashova, Hilola
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (02) : 1659 - 1675
  • [29] Geometric Properties of Normalized Mittag-Leffler Functions
    Noreen, Saddaf
    Raza, Mohsan
    Liu, Jin-Lin
    Arif, Muhammad
    SYMMETRY-BASEL, 2019, 11 (01):
  • [30] Convergence of Series in Mittag-Leffler Type Functions
    Paneva-Konovska, J.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2010, 1301 : 636 - 643