A Geometric Take on Kostant's Convexity Theorem

被引:0
|
作者
Mendes, Ricardo A. E. [1 ]
机构
[1] Univ Oklahoma, Dept Math, 601 Elm Ave, Norman, OK 73019 USA
关键词
Orbit space; Submetry; Convexity; Polar action;
D O I
10.1007/s00031-024-09896-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a compact Lie group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} and an orthogonal G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-representation V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document}, we give a purely metric criterion for a closed subset of the orbit space V/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V/G$$\end{document} to have convex pre-image in V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document}. In fact, this also holds with the natural quotient map V -> V/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\rightarrow V/G$$\end{document} replaced with an arbitrary submetry V -> X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\rightarrow X$$\end{document}. In this context, we introduce a notion of "fat section" which generalizes polar representations, representations of non-trivial copolarity, and isoparametric foliations. We show that Kostant's Convexity Theorem partially generalizes from polar representations to submetries with a fat section, and give examples illustrating that it does not fully generalize to this situation.
引用
收藏
页数:13
相关论文
共 50 条