A Geometric Take on Kostant's Convexity Theorem

被引:0
|
作者
Mendes, Ricardo A. E. [1 ]
机构
[1] Univ Oklahoma, Dept Math, 601 Elm Ave, Norman, OK 73019 USA
关键词
Orbit space; Submetry; Convexity; Polar action;
D O I
10.1007/s00031-024-09896-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a compact Lie group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} and an orthogonal G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-representation V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document}, we give a purely metric criterion for a closed subset of the orbit space V/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V/G$$\end{document} to have convex pre-image in V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document}. In fact, this also holds with the natural quotient map V -> V/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\rightarrow V/G$$\end{document} replaced with an arbitrary submetry V -> X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\rightarrow X$$\end{document}. In this context, we introduce a notion of "fat section" which generalizes polar representations, representations of non-trivial copolarity, and isoparametric foliations. We show that Kostant's Convexity Theorem partially generalizes from polar representations to submetries with a fat section, and give examples illustrating that it does not fully generalize to this situation.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Testing geometric convexity
    Rademacher, Luis
    Vempala, Santosh
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2004, 3328 : 469 - 480
  • [32] Cremona convexity, frame convexity and a theorem of Santalo
    Goodman, J. E.
    Holmsen, A.
    Pollack, R.
    Ranestad, K.
    Sottile, F.
    ADVANCES IN GEOMETRY, 2006, 6 (02) : 301 - 321
  • [33] ON LIAPUNOVS CONVEXITY THEOREM
    DVORETZKY, A
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (06) : 2145 - 2145
  • [34] CONVEXITY AND THE TABLE THEOREM
    MEYERSON, MD
    PACIFIC JOURNAL OF MATHEMATICS, 1981, 97 (01) : 167 - 169
  • [35] HERMAN'S LAST GEOMETRIC THEOREM
    Fayad, Bassam
    Krikorian, Raphael
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2009, 42 (02): : 193 - 219
  • [36] Proof of Poincare's geometric theorem
    Birkhoff, George D.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1913, 14 (1-4) : 14 - 22
  • [37] A geometric derivation of Noether's theorem
    Houchmandzadeh, Bahram
    EUROPEAN JOURNAL OF PHYSICS, 2025, 46 (02)
  • [38] Geometric formulation of Carnot's theorem
    Ibort, A
    de León, M
    Lacomba, EA
    Marrero, JC
    de Diego, DM
    Pitanga, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (08): : 1691 - 1712
  • [39] A geometric approach to Orlov's theorem
    Shipman, Ian
    COMPOSITIO MATHEMATICA, 2012, 148 (05) : 1365 - 1389
  • [40] A simple proof of Kostant's theorem that U(g) is free over its center
    Bernstein, J
    Lunts, V
    AMERICAN JOURNAL OF MATHEMATICS, 1996, 118 (05) : 979 - 987